-
Notifications
You must be signed in to change notification settings - Fork 8
/
mdconv.py
68 lines (51 loc) · 2.45 KB
/
mdconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def split_layer(total_channels, num_groups):
split = [int(np.ceil(total_channels / num_groups)) for _ in range(num_groups)]
split[num_groups - 1] += total_channels - sum(split)
return split
class DepthwiseConv2D(nn.Module):
def __init__(self, in_channels, kernal_size, stride, bias=False):
super(DepthwiseConv2D, self).__init__()
padding = (kernal_size - 1) // 2
self.depthwise_conv = nn.Conv2d(in_channels, in_channels, kernel_size=kernal_size, padding=padding, stride=stride, groups=in_channels, bias=bias)
def forward(self, x):
out = self.depthwise_conv(x)
return out
class GroupConv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, n_chunks=1, bias=False):
super(GroupConv2D, self).__init__()
self.n_chunks = n_chunks
self.split_in_channels = split_layer(in_channels, n_chunks)
split_out_channels = split_layer(out_channels, n_chunks)
if n_chunks == 1:
self.group_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias)
else:
self.group_layers = nn.ModuleList()
for idx in range(n_chunks):
self.group_layers.append(nn.Conv2d(self.split_in_channels[idx], split_out_channels[idx], kernel_size=kernel_size, bias=bias))
def forward(self, x):
if self.n_chunks == 1:
return self.group_conv(x)
else:
split = torch.split(x, self.split_in_channels, dim=1)
out = torch.cat([layer(s) for layer, s in zip(self.group_layers, split)], dim=1)
return out
class MDConv(nn.Module):
def __init__(self, out_channels, n_chunks, stride=1, bias=False):
super(MDConv, self).__init__()
self.n_chunks = n_chunks
self.split_out_channels = split_layer(out_channels, n_chunks)
self.layers = nn.ModuleList()
for idx in range(self.n_chunks):
kernel_size = 2 * idx + 3
self.layers.append(DepthwiseConv2D(self.split_out_channels[idx], kernal_size=kernel_size, stride=stride, bias=bias))
def forward(self, x):
split = torch.split(x, self.split_out_channels, dim=1)
out = torch.cat([layer(s) for layer, s in zip(self.layers, split)], dim=1)
return out
# temp = torch.randn((16, 3, 32, 32))
# group = GroupConv2D(3, 16, n_chunks=2)
# print(group(temp).size())