-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperson_recognition.py
58 lines (45 loc) · 1.47 KB
/
person_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from ultralytics import YOLO
import cv2
import math
# start webcam
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
# load pretrained YOLO modell weights (general purpose)
model = YOLO("yolo-Weights/yolov8n.pt")
# object classes (reduced to people detection only)
classNames = ["person"]
def check_confidence(box):
# confidence
confidence = math.ceil((box.conf[0]*100))/100
print("Confidence --->",confidence)
while True:
success, img = cap.read()
results = model(img, stream=True)
# coordinates
for r in results:
boxes = r.boxes
for box in boxes:
# class name
cls = int(box.cls[0])
if cls == 0: # Only process if the class is "person"
# bounding box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # convert to int values
# put box in cam
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
#check_confidence(box)
# object details
org = [x1, y1]
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 1
color = (255, 0, 0)
thickness = 2
cv2.putText(img, classNames[cls], org, font, fontScale, color, thickness)
# display webcam image
cv2.imshow('Webcam', img)
# exit
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()