Skip to content

Latest commit

 

History

History
120 lines (106 loc) · 2.85 KB

README.md

File metadata and controls

120 lines (106 loc) · 2.85 KB

Galileo

Galileo is the genesis of a symbolic and numerical math tool written in Scala; a Computer Algebra System (CAS). It's similar to matlab or octave, but has many features of maple and mathematica as well in the sense that it supports variables and symbolic calculations.

Differentiating features:

  • Support for tensor operations and differential geometry operations (Christoffel symbols, Ricci and Riemann tensors)
  • Powerful simplification rules (accessible using the simplify command)
  • Symbolic matrix manipulation (you can invert a matrix containing symbols)
  • Support for logic operations
  • Basic framework for rules driven proofs is available (e.g. prove(1/x==x^(-1)))

Installation and running

Galileo uses the 'sbt' build system. After cloning the repository, running

sbt run

will launch the galileo interactive shell.

Galileo also provides a de-facto Scala API for symbolic math, the best way to explore its use is by looking at the test scripts.

Basics

Working with numbers

galileo>5
5
galileo>5+6
11

By default, galileo does not evaluate fractions. The 'eval' command can be used to force the evaluation.

galileo>5/4
5/4
galileo>eval(5/4)
1.25

Working with variables

galileo>x+7
x+7
galileo>x=3
3
galileo>x+7
10

Complex numbers

The imaginary unit is available as either i or j, with i*i=-1

galileo>2+3*i
3*j+2
galileo>j*j
-1

Manipulation of expressions

The commands 'simplify', 'factor' and 'expand' can be used to manipulate expressions.

Logic operations

galileo>true && false
false
galileo>or(false,true)
true

Basic calculus

You can take the derivative using the 'deriv' command.

galileo>deriv(x^2,x)
2.0*x 

Matrices and tensors

Matrix manipulation

galileo>A=[a b;c d]
a    b
c    d
galile0>A[0]
a    b
galileo>A[0,1]
b
galileo>[L,U,P]=lu(A)
L	=
1.0	0.0	
c/a	1.0	

U	=
a	b	
0.0	(-1.0)*b*c/a+d	

P	=
1.0	0.0
0.0	1.0
galileo>L*U
a	b
c	d
galileo>P*A
a	b
c	d
galileo>A=[3 4;5 b]
3.0	4.0
5.0	b
galileo>inv(A)
(-1.0)*b/((-3.0)*b+20.0)	3.0*b/(5.0*((-3.0)*b+20.0))+1.0/5.0
5.0/((-3.0)*b+20.0)	(-15.0)/(5.0*((-3.0)*b+20.0))
galileo> simplify(ans)
(-1.0)*b/((-3.0)*b+20.0)	3.0*b/((-15.0)*b+100.0)+1.0/5.0
5.0/((-3.0)*b+20.0)	(-15.0)/((-15.0)*b+100.0)

Tensor manipulation

galileo> m=metric.generate(three-sphere)
Metric(Tensor(List(TensorIndex(Lower,3), TensorIndex(Lower,3)),List(r^2.0, 0.0, 0.0, 0.0, r^2.0*sin(psi)^2.0, 0.0, 0.0, 0.0, r^2.0*sin(psi)^2.0*sin(theta)^2.0)),List(psi, theta, phi ))
galileo> simplify(einsteintensor(m))
Tensor(List(TensorIndex(Lower,3), TensorIndex(Lower,3)),List(-1.0, 0.0, 0.0, 0.0, (-1.0)*sin(psi)^2.0, 0.0, 0.0, 0.0, sin(psi)^2.0*sin(theta)^2.0+(-1.0)*cos(psi)^2.0*sin(theta)^2.0+(-3.0)*sin(psi)^2.0*sin(theta)^2.0+sin(theta)^2.0))