-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
576 lines (521 loc) · 32.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# -*- coding: UTF-8 -*-
import argparse
from tqdm import tqdm
import os
from utils.logging.tf_logger import Logger
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.optim as optim
import torch
from torch.nn import CrossEntropyLoss
import numpy as np
from model import KEHModel, KEHModel_without_know
from utils.data_utils import construct_edge_image
from utils.dataset import BaseSet
from utils.compute_scores import get_metrics, get_four_metrics
from utils.data_utils import PadCollate, PadCollate_without_know
import json
import re
from utils.data_utils import seed_everything
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
seed_everything(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.multiprocessing.set_sharing_strategy('file_system')
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-m', '--mode', type=str, default='train',
help="mode, {'" + "train" + "', '" + "eval" + "'}")
parser.add_argument('-p', '--path', type=str, default='saved_model path',
help="path, relative path to save model}")
parser.add_argument('-s', '--save', type=str, default='saved model',
help="path, path to saved model}")
parser.add_argument('-o', '--para', type=str, default='parameter.json',
help="path, path to json file keeping parameter}")
args = parser.parse_args()
with open(args.para) as f:
parameter = json.load(f)
annotation_files = parameter["annotation_files"]
img_files = parameter["DATA_DIR"]
use_np = parameter["use_np"]
knowledge_type = parameter["knowledge_type"]
if knowledge_type > 0:
model = KEHModel(txt_input_dim=parameter["txt_input_dim"], txt_out_size=parameter["txt_out_size"],
img_input_dim=parameter["img_input_dim"],
img_inter_dim=parameter["img_inter_dim"],
img_out_dim=parameter["img_out_dim"], cro_layers=parameter["cro_layers"],
cro_heads=parameter["cro_heads"], cro_drop=parameter["cro_drop"],
txt_gat_layer=parameter["txt_gat_layer"], txt_gat_drop=parameter["txt_gat_drop"],
txt_gat_head=parameter["txt_gat_head"],
txt_self_loops=parameter["txt_self_loops"], img_gat_layer=parameter["img_gat_layer"],
img_gat_drop=parameter["img_gat_drop"],
img_gat_head=parameter["img_gat_head"], img_self_loops=parameter["img_self_loops"],
img_edge_dim=parameter["img_edge_dim"],
img_patch=parameter["img_patch"], lam=parameter["lambda"], type_bmco=parameter["type_bmco"],
knowledge_type=knowledge_type,
know_max_length=parameter["know_max_length"], know_gat_layer=parameter["know_gat_layer"],
know_gat_head=parameter["know_gat_head"],
know_cro_layer=parameter["know_cro_layer"], know_cro_head=parameter["know_cro_head"],
know_cro_type=parameter["know_cro_type"], visualization=parameter["visualization"])
print("Image Encoder", sum(p.numel() for p in model.img_encoder.parameters() if p.requires_grad))
print("Text Encoder", sum(p.numel() for p in model.txt_encoder.parameters() if p.requires_grad))
print("Interaction", sum(p.numel() for p in model.interaction.parameters() if p.requires_grad))
print("Interaction with Knowledge", sum(p.numel() for p in model.interaction_know.parameters() if p.requires_grad))
print("Alignment", sum(p.numel() for p in model.alignment.parameters() if p.requires_grad))
print("Alignment with Knowledge", sum(p.numel() for p in model.alignment_know.parameters() if p.requires_grad))
else:
model = KEHModel_without_know(txt_input_dim=parameter["txt_input_dim"], txt_out_size=parameter["txt_out_size"],
img_input_dim=parameter["img_input_dim"],
img_inter_dim=parameter["img_inter_dim"],
img_out_dim=parameter["img_out_dim"], cro_layers=parameter["cro_layers"],
cro_heads=parameter["cro_heads"], cro_drop=parameter["cro_drop"],
txt_gat_layer=parameter["txt_gat_layer"], txt_gat_drop=parameter["txt_gat_drop"],
txt_gat_head=parameter["txt_gat_head"],
txt_self_loops=parameter["txt_self_loops"], img_gat_layer=parameter["img_gat_layer"],
img_gat_drop=parameter["img_gat_drop"],
img_gat_head=parameter["img_gat_head"], img_self_loops=parameter["img_self_loops"],
img_edge_dim=parameter["img_edge_dim"],
img_patch=parameter["img_patch"], lam=parameter["lambda"],
type_bmco=parameter["type_bmco"], visualization=parameter["visualization"])
print("Image Encoder", sum(p.numel() for p in model.img_encoder.parameters() if p.requires_grad))
print("Text Encoder", sum(p.numel() for p in model.txt_encoder.parameters() if p.requires_grad))
print("Interaction", sum(p.numel() for p in model.interaction.parameters() if p.requires_grad))
print("Alignment", sum(p.numel() for p in model.alignment.parameters() if p.requires_grad))
print("Total Params", sum(p.numel() for p in model.parameters() if p.requires_grad))
model.to(device=device)
# 0.05
optimizer = optim.Adam(params=model.parameters(), lr=parameter["lr"], betas=(0.9, 0.999), eps=1e-8,
weight_decay=parameter["weight_decay"],
amsgrad=True)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=parameter["patience"], verbose=True)
# optimizer = optim.Adam(params=model.parameters(), lr=parameter["lr"], betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=True)
cross_entropy_loss = CrossEntropyLoss()
# cross_entropy_loss = CrossEntropyLoss(weight=torch.tensor([1,1.1]).cuda())
# args.path must be relative path
logger = Logger(model_name=parameter["model_name"], data_name='twitter',
log_path=os.path.join(parameter["TARGET_DIR"], args.path,
'tf_logs', parameter["model_name"]))
img_edge_index = construct_edge_image(parameter["img_patch"])
def train_model(epoch, train_loader):
"""
Performs one training epoch and updates the weight of the current model
Args:
train_loader:
optimizer:
epoch(int): Current epoch number
Returns:
None
"""
train_loss = 0.0
total = 0.0
model.train()
predict = []
real_label = []
if knowledge_type > 0:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, encoded_know, know_word_spans, mask_batch_know,
edge_cap_know, gnn_mask_know,
key_padding_mask_img) in enumerate(tqdm(train_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
encoded_know = {k: v.to(device) for k, v in encoded_know.items()}
batch = len(img_batch)
with torch.set_grad_enabled(True):
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), encoded_know=encoded_know, know_word_spans=know_word_spans,
mask_batch_know=mask_batch_know.cuda()
, edge_cap_know=edge_cap_know, gnn_mask_know=gnn_mask_know.cuda(), img_edge_attr=None,
key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
loss.backward()
train_loss += float(loss.detach().item())
optimizer.step()
optimizer.zero_grad() # clear gradients for this training step
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
total += batch
torch.cuda.empty_cache()
del img_batch, embed_batch1
else:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, key_padding_mask_img) in enumerate(tqdm(train_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
batch = len(img_batch)
with torch.set_grad_enabled(True):
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), img_edge_attr=None, key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
loss.backward()
train_loss += float(loss.detach().item())
optimizer.step()
optimizer.zero_grad() # clear gradients for this training step
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
total += batch
torch.cuda.empty_cache()
del img_batch, embed_batch1
# Calculate loss and accuracy for current epoch
logger.log(mode="train", scalar_value=train_loss / len(train_loader), epoch=epoch, scalar_name='loss')
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
logger.log(mode="train", scalar_value=acc, epoch=epoch, scalar_name='accuracy')
print(' Train Epoch: {} Loss: {:.4f} Acc: {:.4f} Rec: {:.4f} Pre: {:.4f} F1: {:.4f}'.format(epoch, train_loss / len(
train_loader), acc, recall,
precision, f1))
def eval_validation_loss(val_loader):
"""
Computes validation loss on the saved model, useful to resume training for an already saved model
"""
val_loss = 0.
predict = []
real_label = []
model.eval()
with torch.no_grad():
if knowledge_type > 0:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, encoded_know, know_word_spans, mask_batch_know,
edge_cap_know, gnn_mask_know,
key_padding_mask_img) in enumerate(tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
encoded_know = {k: v.to(device) for k, v in encoded_know.items()}
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), encoded_know=encoded_know, know_word_spans=know_word_spans,
mask_batch_know=mask_batch_know.cuda()
, edge_cap_know=edge_cap_know, gnn_mask_know=gnn_mask_know.cuda(), img_edge_attr=None,
key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
else:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, key_padding_mask_img) in enumerate(tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), img_edge_attr=None, key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
print(' Val Avg loss: {:.4f} Acc: {:.4f} Rec: {:.4f} Pre: {:.4f} F1: {:.4f}'.format(val_loss / len(val_loader),
acc, recall,
precision, f1))
return val_loss
def evaluate_model(epoch, val_loader):
"""
Performs one validation epoch and computes loss and accuracy on the validation set
Args:
model:
epoch (int): Current epoch number
Returns:
val_loss (float): Average loss on the validation set
"""
val_loss = 0.
predict = []
real_label = []
model.eval()
with torch.no_grad():
if knowledge_type > 0:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, encoded_know, know_word_spans, mask_batch_know,
edge_cap_know,
gnn_mask_know, key_padding_mask_img) in enumerate(
tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
encoded_know = {k: v.to(device) for k, v in encoded_know.items()}
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), encoded_know=encoded_know, know_word_spans=know_word_spans,
mask_batch_know=mask_batch_know.cuda()
, edge_cap_know=edge_cap_know, gnn_mask_know=gnn_mask_know.cuda(), img_edge_attr=None,
key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
else:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, key_padding_mask_img) in enumerate(tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), img_edge_attr=None, key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
logger.log(mode="val", scalar_value=val_loss / len(val_loader), epoch=epoch, scalar_name='loss')
logger.log(mode="val", scalar_value=acc, epoch=epoch, scalar_name='accuracy')
print(' Val Epoch: {} Avg loss: {:.4f} Acc: {:.4f} Rec: {:.4f} Pre: {:.4f} F1: {:.4f}'.format(epoch,
val_loss / len(
val_loader),
acc, recall,
precision, f1))
return val_loss
def evaluate_model_test(epoch, test_loader):
"""
Performs one validation epoch and computes loss and accuracy on the validation set
Args:
epoch (int): Current epoch number
test_loader:
Returns:
val_loss (float): Average loss on the validation set
"""
test_loss = 0.
predict = []
real_label = []
model.eval()
with torch.no_grad():
if knowledge_type > 0:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, encoded_know, know_word_spans, mask_batch_know,
edge_cap_know,
gnn_mask_know, key_padding_mask_img) in enumerate(
tqdm(test_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
encoded_know = {k: v.to(device) for k, v in encoded_know.items()}
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), encoded_know=encoded_know, know_word_spans=know_word_spans,
mask_batch_know=mask_batch_know.cuda()
, edge_cap_know=edge_cap_know, img_edge_attr=None, gnn_mask_know=gnn_mask_know.cuda(),
key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
test_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
else:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, key_padding_mask_img) in enumerate(tqdm(test_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
with torch.set_grad_enabled(True):
y = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), img_edge_attr=None, key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
test_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
torch.cuda.empty_cache()
del img_batch, embed_batch1
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
logger.log(mode="test", scalar_value=test_loss / len(test_loader), epoch=epoch, scalar_name='loss')
logger.log(mode="test", scalar_value=acc, epoch=epoch, scalar_name='accuracy')
print(' Test Epoch: {} Avg loss: {:.4f} Acc: {:.4f} Rec: {:.4f} Pre: {:.4f} F1: {:.4f}'.format(epoch,
test_loss / len(
test_loader),
acc, recall,
precision, f1))
return test_loss
def test_match_accuracy(val_loader):
"""
Args:
Once the model is trained, it is used to evaluate the how accurately the captions align with the objects in the image
"""
try:
print("Loading Saved Model")
checkpoint = torch.load(args.save)
model.load_state_dict(checkpoint)
print("Saved Model successfully loaded")
val_loss = 0.
predict = []
real_label = []
pv_list = []
pv_know_list = []
a_list = []
a_know_list = []
model.eval()
with torch.no_grad():
if knowledge_type > 0:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, encoded_know, know_word_spans,
mask_batch_know, edge_cap_know, gnn_mask_know,
key_padding_mask_img) in enumerate(tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
encoded_know = {k: v.to(device) for k, v in encoded_know.items()}
y, pv, pv_know, a, a_know = model(imgs=img_batch.cuda(), texts=embed_batch1,
mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1,
gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), encoded_know=encoded_know,
know_word_spans=know_word_spans,
mask_batch_know=mask_batch_know.cuda()
, edge_cap_know=edge_cap_know, img_edge_attr=None,
gnn_mask_know=gnn_mask_know.cuda(),
key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
pv_list.append(pv.cpu().clone().detach())
pv_know_list.append(pv_know.cpu().clone().detach())
a_list.append(a.cpu().clone().detach())
a_know_list.append(a_know.cpu().clone().detach())
torch.cuda.empty_cache()
del img_batch, embed_batch1
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
save_result = {"real_label": real_label, 'predict_label': predict, "pv_list": pv_list,
"pv_know_list ":
pv_know_list, " a_list": a_list, "a_know_list": a_know_list}
torch.save(save_result, "with_know")
else:
for batch_idx, (img_batch, embed_batch1, org_seq, org_word_len, mask_batch1,
edge_cap1, gnn_mask_1, np_mask_1, labels, key_padding_mask_img) in enumerate(tqdm(val_loader)):
embed_batch1 = {k: v.to(device) for k, v in embed_batch1.items()}
with torch.no_grad():
y, a, pv = model(imgs=img_batch.cuda(), texts=embed_batch1, mask_batch=mask_batch1.cuda(),
img_edge_index=img_edge_index,
t1_word_seq=org_seq, txt_edge_index=edge_cap1, gnn_mask=gnn_mask_1.cuda(),
np_mask=np_mask_1.cuda(), img_edge_attr=None, key_padding_mask_img=key_padding_mask_img)
loss = cross_entropy_loss(y, labels.cuda())
val_loss += float(loss.clone().detach().item())
predict = predict + get_metrics(y.cpu())
real_label = real_label + labels.cpu().numpy().tolist()
pv_list.append(pv.cpu().clone().detach())
a_list.append(a.cpu().clone().detach())
torch.cuda.empty_cache()
del img_batch, embed_batch1
acc, recall, precision, f1 = get_four_metrics(real_label, predict)
save_result = {"real_label": real_label, 'predict_label': predict, "pv_list": pv_list,
" a_list": a_list}
torch.save(save_result, "with_out_knowledge")
print(
"Avg loss: {:.4f} Acc: {:.4f} Rec: {:.4f} Pre: {:.4f} F1: {:.4f}".format(val_loss, acc, recall, precision,
f1))
except Exception as e:
print(e)
exit()
def main():
if args.mode == 'train':
# annotation_train = os.path.join(annotation_files, "trainknow.json")
# annotation_val = os.path.join(annotation_files, "valknow.json")
# annotation_test = os.path.join(annotation_files, "testknow.json")
if knowledge_type == 0:
annotation_train = os.path.join(annotation_files, "traindep.json")
annotation_val = os.path.join(annotation_files, "valdep.json")
annotation_test = os.path.join(annotation_files, "testdep.json")
else:
annotation_train = os.path.join(annotation_files, "trainknow_dep.json")
annotation_val = os.path.join(annotation_files, "valknow_dep.json")
annotation_test = os.path.join(annotation_files, "testknow_dep.json")
img_train = os.path.join(img_files, "train_B32.pt")
img_val = os.path.join(img_files, "val_B32.pt")
img_test = os.path.join(img_files, "test_B32.pt")
# img_train = os.path.join(img_files, "train_152.pt")
# img_val = os.path.join(img_files, "val_152.pt")
# img_test = os.path.join(img_files, "test_152.pt")
train_dataset = BaseSet(type="train", max_length=parameter["max_length"], text_path=annotation_train,
use_np=use_np, img_path=img_train,
knowledge=knowledge_type)
val_dataset = BaseSet(type="val", max_length=parameter["max_length"], text_path=annotation_val, use_np=use_np,
img_path=img_val, knowledge=knowledge_type)
test_dataset = BaseSet(type="test", max_length=parameter["max_length"], text_path=annotation_test,
use_np=use_np, img_path=img_test, knowledge=knowledge_type)
if knowledge_type > 0:
train_loader = DataLoader(dataset=train_dataset, batch_size=parameter["batch_size"], num_workers=8,
shuffle=True,
collate_fn=PadCollate(use_np=use_np, max_know_len=parameter["know_max_length"],
knwoledge_type=knowledge_type))
print("training dataset has been loaded successful!")
val_loader = DataLoader(dataset=val_dataset, batch_size=parameter["batch_size"], num_workers=4,
shuffle=True,
collate_fn=PadCollate(use_np=use_np, max_know_len=parameter["know_max_length"],
knwoledge_type=knowledge_type))
print("validation dataset has been loaded successful!")
test_loader = DataLoader(dataset=test_dataset, batch_size=parameter["batch_size"], num_workers=4,
shuffle=True,
collate_fn=PadCollate(use_np=use_np, max_know_len=parameter["know_max_length"],
knwoledge_type=knowledge_type))
print("test dataset has been loaded successful!")
else:
train_loader = DataLoader(dataset=train_dataset, batch_size=parameter["batch_size"], num_workers=4,
shuffle=True,
collate_fn=PadCollate_without_know())
print("training dataset has been loaded successful!")
val_loader = DataLoader(dataset=val_dataset, batch_size=parameter["batch_size"], num_workers=4,
shuffle=True,
collate_fn=PadCollate_without_know())
print("validation dataset has been loaded successful!")
test_loader = DataLoader(dataset=test_dataset, batch_size=parameter["batch_size"], num_workers=4,
shuffle=True,
collate_fn=PadCollate_without_know())
print("test dataset has been loaded successful!")
start_epoch = 0
patience = 8
if args.path is not None and not os.path.exists(args.path):
os.mkdir(args.path)
try:
print("Loading Saved Model")
checkpoint = torch.load(args.save)
model.load_state_dict(checkpoint)
start_epoch = int(re.search("-\d+", args.save).group()[1:]) + 1
print("Saved Model successfully loaded")
# Only effect special layers like dropout layer
model.eval()
best_loss = eval_validation_loss(val_loader=val_loader)
except:
print("Failed, No Saved Model")
best_loss = np.Inf
early_stop = False
counter = 0
for epoch in range(start_epoch + 1, parameter["epochs"] + 1):
# Training epoch
train_model(epoch=epoch, train_loader=train_loader)
# Validation epoch
avg_val_loss = evaluate_model(epoch, val_loader=val_loader)
avg_test_loss = evaluate_model_test(epoch, test_loader=test_loader)
scheduler.step(avg_val_loss)
if avg_val_loss <= best_loss:
counter = 0
best_loss = avg_val_loss
# torch.save(model.state_dict(), os.path.join(args.path, parameter["model_name"] + '-' + str(epoch) + '.pt'))
print("Best model saved/updated..")
torch.cuda.empty_cache()
else:
counter += 1
if counter >= patience:
early_stop = True
# If early stopping flag is true, then stop the training
torch.save(model.state_dict(), os.path.join(args.path, parameter["model_name"] + '-' + str(epoch) + '.pt'))
if early_stop:
print("Early stopping")
break
elif args.mode == 'eval':
# args.save
annotation_test = os.path.join(annotation_files, "testdep.json")
img_test = os.path.join(img_files, "test_B32.pt")
test_dataset = BaseSet(type="test", max_length=parameter["max_length"], text_path=annotation_test,
use_np=use_np,
img_path=img_test, knowledge=parameter["knowledge_type"])
test_loader = DataLoader(dataset=test_dataset, batch_size=parameter["batch_size"], shuffle=False,
collate_fn=PadCollate(use_np=use_np, max_know_len=parameter["know_max_length"]))
print("validation dataset has been loaded successful!")
test_match_accuracy(val_loader=test_loader)
else:
print("Mode of SSGN is error!")
if __name__ == "__main__":
main()
# seed_everything(42)