-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsummarize.py
192 lines (146 loc) · 8.17 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import os
from multiprocessing import Pool
import math
import argparse
import copy
import itertools
from Logger import Logger
from util import print_table, files_in_dir
from SummaryCreator import SummaryCreator
from ArticleDataSample import ArticleDataSample
from HmmArticle import HmmArticle, HmmArticleConfig, PredictedSeqInfoKey
def summarize(args):
col_order = PredictedSeqInfoKey.get_columns_order()
failed_articles = []
articles_folder = os.path.join(args.data_folder, "text")
transcript_folder = os.path.join(args.data_folder, "transcript")
sections_info_folder = os.path.join(args.data_folder, "sections_info")
section_per_sent_folder = os.path.join(args.data_folder, "section_per_sent")
article_names = args.article_names
print("number of articles: {}".format(len(article_names)))
predict_enable = not args.no_predict
# log only if we are in predict mode
logging_enable = predict_enable
for article_i, article_name in enumerate(article_names):
if logging_enable:
# set up log file for current article
log_filename = os.path.join(args.log_folder, article_name)
if os.path.isfile(log_filename):
raise Exception("log file already exists: {}".format(log_filename))
logger = Logger(log_filename)
sys.stdout = sys.stderr = logger
print("Logging to file: {}\n".format(log_filename))
print("--- paper {}: {}\n".format(article_i, article_name))
article_fname = os.path.join(articles_folder, article_name)
transcript_fname = os.path.join(transcript_folder, article_name)
sections_info_fname = os.path.join(sections_info_folder, article_name)
section_per_sent_fname = os.path.join(section_per_sent_folder, article_name)
# remove the ".txt" extension and add numpy extension
similarity_fname = article_name[:-4] + '.npy'
similarity_fname = os.path.join(args.similarity_folder, similarity_fname)
try:
article_data_sample = ArticleDataSample(transcript_fname,
article_fname,
sections_info_fname,
section_per_sent_fname)
# prepare configuration
cfg = HmmArticleConfig(args.word_embed_path, labeled_data_mode=False)
cfg.similarity_fname = similarity_fname
cfg.print_configuration()
print("")
durations_folder = os.path.join(args.base_summaries_folder, "durations")
os.makedirs(durations_folder, mode=0o775, exist_ok=True)
durations_fname = os.path.join(durations_folder, article_name)
alignment_folder = os.path.join(args.base_summaries_folder, "alignment")
os.makedirs(alignment_folder, mode=0o775, exist_ok=True)
alignment_fname = os.path.join(alignment_folder, article_name)
top_scored_sents_folder = os.path.join(args.base_summaries_folder,
"top_scored_sents.num_sents_{}_thresh_{}".format(args.num_sents,
args.thresh))
os.makedirs(top_scored_sents_folder, mode=0o775, exist_ok=True)
top_scored_sents_fname = os.path.join(top_scored_sents_folder, article_name)
if predict_enable:
hmm_article = HmmArticle(article_data_sample, cfg)
predicted_seq_info, log_prob = hmm_article.predict()
print("log_prob = {}".format(log_prob))
print("predicted sequence info:\n")
alignment_str = print_table(predicted_seq_info, col_order)
with open(alignment_fname, 'w') as out_file:
out_file.write(alignment_str + "\n")
print("\n")
hmm_article.create_durations_file(durations_fname)
summary_creator = SummaryCreator(article_data_sample,
durations_fname=durations_fname)
if os.path.isfile(top_scored_sents_fname):
print("file exists: {}".format(top_scored_sents_fname))
else:
summary_creator.create_top_scored_sents_file(args.num_sents,
args.thresh,
top_scored_sents_fname)
if predict_enable:
warnings = hmm_article.get_warnings()
if len(warnings) > 0:
for warning in warnings:
print("- {}".format(warning))
except Exception as ex:
print("EXCEPTION WAS CAUGHT FOR PAPER: {}".format(article_name))
print(ex)
failed_articles.append(article_name)
return failed_articles
def main(args):
predict_enable = not args.no_predict
os.makedirs(args.out_folder, mode=0o775, exist_ok=True)
# take the basename and remove the extension
word_embed_description = os.path.basename(args.word_embed_path)[:-4]
experiment_folder = f'embed_{word_embed_description}'
args.base_summaries_folder = os.path.join(args.out_folder, experiment_folder, "output")
os.makedirs(args.base_summaries_folder, mode=0o775, exist_ok=(not predict_enable))
args.similarity_folder = os.path.join(args.out_folder, experiment_folder, "similarity")
os.makedirs(args.similarity_folder, mode=0o775, exist_ok=True)
args.log_folder = os.path.join(args.base_summaries_folder, "log")
os.makedirs(args.log_folder, mode=0o775, exist_ok=(not predict_enable))
article_names = files_in_dir(os.path.join(args.data_folder, "transcript"))
num_processors = args.num_processors
print("num_processors: {}".format(num_processors))
if args.num_processors > 1: # multiprocessing
num_articles = len(article_names)
papers_per_process = math.ceil(num_articles / num_processors)
args_list = [copy.copy(args) for _ in range(num_processors)]
for i in range(num_processors):
args_list[i].article_names = article_names[i*papers_per_process: (i+1)*papers_per_process]
p = Pool(num_processors)
failed_lists = p.map(summarize, args_list)
# list of lists -> one list
failed_list = list(itertools.chain.from_iterable(failed_lists))
else: # run on single processor
args.article_names = article_names
failed_list = summarize(args)
num_failed = len(failed_list)
if num_failed > 0:
print("FAILED ARTICLES ({}):".format(num_failed))
for article_name in failed_list:
print(article_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='This script applies the HMM to generate scores for the papers sentences, and to create summaries'
)
parser.add_argument('--data_folder',
help='data folder')
parser.add_argument('--out_folder',
help='output folder')
parser.add_argument('--word_embed_path',
help='path to word embedding file (both GloVe & word2vec bin-file formats are supported')
parser.add_argument('--num_processors', type=int, default=1,
help='number of processors (use 1 to avoid multiprocessing)')
parser.add_argument('--no_predict', action='store_true',
help='disable HMM prediction (relevant if you have already applied the HMM and obtained'
'sentence scores)')
parser.add_argument('--num_sents', type=int, default=30,
help='desired number of top-scored sentences in the generated summary. '
'sentences will be retrieved only if their duration is at least \'thresh\', which means '
'that the number of retrieved sentences might be smaller than \'num_sents\'')
parser.add_argument('--thresh', type=int, default=1,
help='duration threshold for retrieving sentences, as described in the help of \'num_sents\'')
args = parser.parse_args()
main(args)