-
Notifications
You must be signed in to change notification settings - Fork 15
/
txt2vec.py
129 lines (94 loc) · 4.01 KB
/
txt2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import pickle
from bigfile import BigFile
from common import logger
from textlib import TextTool
def get_lang(data_path):
return 'en'
class Txt2Vec(object):
'''
norm: 0 no norm, 1 l_1 norm, 2 l_2 norm
'''
def __init__(self, data_path, norm=0, clean=True):
logger.info(self.__class__.__name__+ ' initializing ...')
self.data_path = data_path
self.norm = norm
self.lang = get_lang(data_path)
self.clean = clean
assert (norm in [0, 1, 2]), 'invalid norm %s' % norm
def _preprocess(self, query):
words = TextTool.tokenize(query, clean=self.clean, language=self.lang)
return words
def _do_norm(self, vec):
assert (1 == self.norm or 2 == self.norm)
norm = np.linalg.norm(vec, self.norm)
return vec / (norm + 1e-10) # avoid divide by ZERO
def _encoding(self, words):
raise Exception("encoding not implemented yet!")
def encoding(self, query):
words = self._preprocess(query)
vec = self._encoding(words)
if self.norm > 0:
return self.do_norm(vec)
return vec
class BowVec(Txt2Vec):
def __init__(self, data_path, norm=0, clean=True):
super(BowVec, self).__init__(data_path, norm, clean)
self.vocab = pickle.load(open(data_path, 'rb'))
self.ndims = len(self.vocab)
logger.info('vob size: %d, vec dim: %d' % (len(self.vocab), self.ndims))
def _encoding(self, words):
vec = np.zeros(self.ndims, )
for word in words:
idx = self.vocab.find(word)
if idx>=0:
vec[idx] += 1
return vec
class W2Vec(Txt2Vec):
def __init__(self, data_path, norm=0, clean=True):
super(W2Vec, self).__init__(data_path, norm, clean)
self.w2v = BigFile(data_path)
vocab_size, self.ndims = self.w2v.shape()
logger.info('vob size: %d, vec dim: %d' % (vocab_size, self.ndims))
def _encoding(self, words):
renamed, vectors = self.w2v.read(words)
if len(vectors) > 0:
vec = np.array(vectors).mean(axis=0)
else:
vec = np.zeros(self.ndims, )
return vec
class IndexVec(Txt2Vec):
def __init__(self, data_path, clean=True):
super(IndexVec, self).__init__(data_path, 0, clean)
self.vocab = pickle.load(open(data_path, 'rb'))
logger.info('vob size: %s' % (len(self.vocab)))
def _preprocess(self, query):
words = TextTool.tokenize(query, clean=self.clean, language=self.lang, remove_stopword=False)
words = ['<start>'] + words + ['<end>']
return words
def _encoding(self, words):
return np.array([self.vocab(word) for word in words])
class BowVecNSW(BowVec):
def __init__(self, data_path, norm=0, clean=True):
super(BowVecNSW, self).__init__(data_path, norm, clean)
if '_nsw' not in data_path:
logger.error('WARNING: loaded a vocabulary that contains stopwords')
def _preprocess(self, query):
words = TextTool.tokenize(query, clean=self.clean, language=self.lang, remove_stopword=True)
return words
class W2VecNSW(W2Vec):
def _preprocess(self, query):
words = TextTool.tokenize(query, clean=self.clean, language=self.lang, remove_stopword=True)
return words
NAME_TO_T2V = {'bow': BowVec, 'bow_nsw': BowVecNSW, 'w2v': W2Vec, 'w2v_nsw': W2VecNSW, 'idxvec': IndexVec}
def get_txt2vec(name):
assert name in NAME_TO_T2V
return NAME_TO_T2V[name]
if __name__ == '__main__':
t2v = BowVec('VisualSearch/tgif-msrvtt10k/TextData/vocab/bow_5.pkl')
t2v = BowVecNSW('VisualSearch/tgif-msrvtt10k/TextData/vocab/bow_nsw_5.pkl')
t2v = BowVecNSW('VisualSearch/tgif-msrvtt10k/TextData/vocab/bow_5.pkl')
t2v = W2Vec('VisualSearch/word2vec/flickr/vec500flickr30m')
t2v = W2VecNSW('VisualSearch/word2vec/flickr/vec500flickr30m')
vec = t2v.encoding('a dog runs on grass')
print vec.shape