-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtable.go
516 lines (434 loc) · 15.5 KB
/
table.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Package kbucket implements a kademlia 'k-bucket' routing table.
package kbucket
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/libp2p/go-libp2p/core/peer"
"github.com/libp2p/go-libp2p/core/peerstore"
"github.com/libp2p/go-libp2p-kbucket/peerdiversity"
logging "github.com/ipfs/go-log"
)
var log = logging.Logger("table")
var ErrPeerRejectedHighLatency = errors.New("peer rejected; latency too high")
var ErrPeerRejectedNoCapacity = errors.New("peer rejected; insufficient capacity")
// RoutingTable defines the routing table.
type RoutingTable struct {
// the routing table context
ctx context.Context
// function to cancel the RT context
ctxCancel context.CancelFunc
// ID of the local peer
local ID
// Blanket lock, refine later for better performance
tabLock sync.RWMutex
// latency metrics
metrics peerstore.Metrics
// Maximum acceptable latency for peers in this cluster
maxLatency time.Duration
// kBuckets define all the fingers to other nodes.
buckets []*bucket
bucketsize int
cplRefreshLk sync.RWMutex
cplRefreshedAt map[uint]time.Time
// notification functions
PeerRemoved func(peer.ID)
PeerAdded func(peer.ID)
// usefulnessGracePeriod is the maximum grace period we will give to a
// peer in the bucket to be useful to us, failing which, we will evict
// it to make place for a new peer if the bucket is full
usefulnessGracePeriod time.Duration
df *peerdiversity.Filter
}
// NewRoutingTable creates a new routing table with a given bucketsize, local ID, and latency tolerance.
func NewRoutingTable(bucketsize int, localID ID, latency time.Duration, m peerstore.Metrics, usefulnessGracePeriod time.Duration,
df *peerdiversity.Filter) (*RoutingTable, error) {
rt := &RoutingTable{
buckets: []*bucket{newBucket()},
bucketsize: bucketsize,
local: localID,
maxLatency: latency,
metrics: m,
cplRefreshedAt: make(map[uint]time.Time),
PeerRemoved: func(peer.ID) {},
PeerAdded: func(peer.ID) {},
usefulnessGracePeriod: usefulnessGracePeriod,
df: df,
}
rt.ctx, rt.ctxCancel = context.WithCancel(context.Background())
return rt, nil
}
// Close shuts down the Routing Table & all associated processes.
// It is safe to call this multiple times.
func (rt *RoutingTable) Close() error {
rt.ctxCancel()
return nil
}
// NPeersForCpl returns the number of peers we have for a given Cpl
func (rt *RoutingTable) NPeersForCpl(cpl uint) int {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
// it's in the last bucket
if int(cpl) >= len(rt.buckets)-1 {
count := 0
b := rt.buckets[len(rt.buckets)-1]
for _, p := range b.peers() {
if CommonPrefixLen(rt.local, p.dhtId) == int(cpl) {
count++
}
}
return count
} else {
return rt.buckets[cpl].len()
}
}
// TryAddPeer tries to add a peer to the Routing table.
// If the peer ALREADY exists in the Routing Table and has been queried before, this call is a no-op.
// If the peer ALREADY exists in the Routing Table but hasn't been queried before, we set it's LastUsefulAt value to
// the current time. This needs to done because we don't mark peers as "Useful"(by setting the LastUsefulAt value)
// when we first connect to them.
//
// If the peer is a queryPeer i.e. we queried it or it queried us, we set the LastSuccessfulOutboundQuery to the current time.
// If the peer is just a peer that we connect to/it connected to us without any DHT query, we consider it as having
// no LastSuccessfulOutboundQuery.
//
//
// If the logical bucket to which the peer belongs is full and it's not the last bucket, we try to replace an existing peer
// whose LastSuccessfulOutboundQuery is above the maximum allowed threshold in that bucket with the new peer.
// If no such peer exists in that bucket, we do NOT add the peer to the Routing Table and return error "ErrPeerRejectedNoCapacity".
// TryAddPeer returns a boolean value set to true if the peer was newly added to the Routing Table, false otherwise.
// It also returns any error that occurred while adding the peer to the Routing Table. If the error is not nil,
// the boolean value will ALWAYS be false i.e. the peer wont be added to the Routing Table it it's not already there.
//
// A return value of false with error=nil indicates that the peer ALREADY exists in the Routing Table.
func (rt *RoutingTable) TryAddPeer(p peer.ID, queryPeer bool, isReplaceable bool) (bool, error) {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
return rt.addPeer(p, queryPeer, isReplaceable)
}
// locking is the responsibility of the caller
func (rt *RoutingTable) addPeer(p peer.ID, queryPeer bool, isReplaceable bool) (bool, error) {
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
now := time.Now()
var lastUsefulAt time.Time
if queryPeer {
lastUsefulAt = now
}
// peer already exists in the Routing Table.
if peerInfo := bucket.getPeer(p); peerInfo != nil {
// if we're querying the peer first time after adding it, let's give it a
// usefulness bump. This will ONLY happen once.
if peerInfo.LastUsefulAt.IsZero() && queryPeer {
peerInfo.LastUsefulAt = lastUsefulAt
}
return false, nil
}
// peer's latency threshold is NOT acceptable
if rt.metrics.LatencyEWMA(p) > rt.maxLatency {
// Connection doesnt meet requirements, skip!
return false, ErrPeerRejectedHighLatency
}
// add it to the diversity filter for now.
// if we aren't able to find a place for the peer in the table,
// we will simply remove it from the Filter later.
if rt.df != nil {
if !rt.df.TryAdd(p) {
return false, errors.New("peer rejected by the diversity filter")
}
}
// We have enough space in the bucket (whether spawned or grouped).
if bucket.len() < rt.bucketsize {
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
return true, nil
}
if bucketID == len(rt.buckets)-1 {
// if the bucket is too large and this is the last bucket (i.e. wildcard), unfold it.
rt.nextBucket()
// the structure of the table has changed, so let's recheck if the peer now has a dedicated bucket.
bucketID = rt.bucketIdForPeer(p)
bucket = rt.buckets[bucketID]
// push the peer only if the bucket isn't overflowing after slitting
if bucket.len() < rt.bucketsize {
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
return true, nil
}
}
// the bucket to which the peer belongs is full. Let's try to find a peer
// in that bucket which is replaceable.
// we don't really need a stable sort here as it dosen't matter which peer we evict
// as long as it's a replaceable peer.
replaceablePeer := bucket.min(func(p1 *PeerInfo, p2 *PeerInfo) bool {
return p1.replaceable
})
if replaceablePeer != nil && replaceablePeer.replaceable {
// let's evict it and add the new peer
if rt.removePeer(replaceablePeer.Id) {
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
return true, nil
}
}
// we weren't able to find place for the peer, remove it from the filter state.
if rt.df != nil {
rt.df.Remove(p)
}
return false, ErrPeerRejectedNoCapacity
}
// MarkAllPeersIrreplaceable marks all peers in the routing table as irreplaceable
// This means that we will never replace an existing peer in the table to make space for a new peer.
// However, they can still be removed by calling the `RemovePeer` API.
func (rt *RoutingTable) MarkAllPeersIrreplaceable() {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
for i := range rt.buckets {
b := rt.buckets[i]
b.updateAllWith(func(p *PeerInfo) {
p.replaceable = false
})
}
}
// GetPeerInfos returns the peer information that we've stored in the buckets
func (rt *RoutingTable) GetPeerInfos() []PeerInfo {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
var pis []PeerInfo
for _, b := range rt.buckets {
pis = append(pis, b.peers()...)
}
return pis
}
// UpdateLastSuccessfulOutboundQueryAt updates the LastSuccessfulOutboundQueryAt time of the peer.
// Returns true if the update was successful, false otherwise.
func (rt *RoutingTable) UpdateLastSuccessfulOutboundQueryAt(p peer.ID, t time.Time) bool {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if pc := bucket.getPeer(p); pc != nil {
pc.LastSuccessfulOutboundQueryAt = t
return true
}
return false
}
// UpdateLastUsefulAt updates the LastUsefulAt time of the peer.
// Returns true if the update was successful, false otherwise.
func (rt *RoutingTable) UpdateLastUsefulAt(p peer.ID, t time.Time) bool {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if pc := bucket.getPeer(p); pc != nil {
pc.LastUsefulAt = t
return true
}
return false
}
// RemovePeer should be called when the caller is sure that a peer is not useful for queries.
// For eg: the peer could have stopped supporting the DHT protocol.
// It evicts the peer from the Routing Table.
func (rt *RoutingTable) RemovePeer(p peer.ID) {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
rt.removePeer(p)
}
// locking is the responsibility of the caller
func (rt *RoutingTable) removePeer(p peer.ID) bool {
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if bucket.remove(p) {
if rt.df != nil {
rt.df.Remove(p)
}
for {
lastBucketIndex := len(rt.buckets) - 1
// remove the last bucket if it's empty and it isn't the only bucket we have
if len(rt.buckets) > 1 && rt.buckets[lastBucketIndex].len() == 0 {
rt.buckets[lastBucketIndex] = nil
rt.buckets = rt.buckets[:lastBucketIndex]
} else if len(rt.buckets) >= 2 && rt.buckets[lastBucketIndex-1].len() == 0 {
// if the second last bucket just became empty, remove and replace it with the last bucket.
rt.buckets[lastBucketIndex-1] = rt.buckets[lastBucketIndex]
rt.buckets[lastBucketIndex] = nil
rt.buckets = rt.buckets[:lastBucketIndex]
} else {
break
}
}
// peer removed callback
rt.PeerRemoved(p)
return true
}
return false
}
func (rt *RoutingTable) nextBucket() {
// This is the last bucket, which allegedly is a mixed bag containing peers not belonging in dedicated (unfolded) buckets.
// _allegedly_ is used here to denote that *all* peers in the last bucket might feasibly belong to another bucket.
// This could happen if e.g. we've unfolded 4 buckets, and all peers in folded bucket 5 really belong in bucket 8.
bucket := rt.buckets[len(rt.buckets)-1]
newBucket := bucket.split(len(rt.buckets)-1, rt.local)
rt.buckets = append(rt.buckets, newBucket)
// The newly formed bucket still contains too many peers. We probably just unfolded a empty bucket.
if newBucket.len() >= rt.bucketsize {
// Keep unfolding the table until the last bucket is not overflowing.
rt.nextBucket()
}
}
// Find a specific peer by ID or return nil
func (rt *RoutingTable) Find(id peer.ID) peer.ID {
srch := rt.NearestPeers(ConvertPeerID(id), 1)
if len(srch) == 0 || srch[0] != id {
return ""
}
return srch[0]
}
// NearestPeer returns a single peer that is nearest to the given ID
func (rt *RoutingTable) NearestPeer(id ID) peer.ID {
peers := rt.NearestPeers(id, 1)
if len(peers) > 0 {
return peers[0]
}
log.Debugf("NearestPeer: Returning nil, table size = %d", rt.Size())
return ""
}
// NearestPeers returns a list of the 'count' closest peers to the given ID
func (rt *RoutingTable) NearestPeers(id ID, count int) []peer.ID {
// This is the number of bits _we_ share with the key. All peers in this
// bucket share cpl bits with us and will therefore share at least cpl+1
// bits with the given key. +1 because both the target and all peers in
// this bucket differ from us in the cpl bit.
cpl := CommonPrefixLen(id, rt.local)
// It's assumed that this also protects the buckets.
rt.tabLock.RLock()
// Get bucket index or last bucket
if cpl >= len(rt.buckets) {
cpl = len(rt.buckets) - 1
}
pds := peerDistanceSorter{
peers: make([]peerDistance, 0, count+rt.bucketsize),
target: id,
}
// Add peers from the target bucket (cpl+1 shared bits).
pds.appendPeersFromList(rt.buckets[cpl].list)
// If we're short, add peers from all buckets to the right. All buckets
// to the right share exactly cpl bits (as opposed to the cpl+1 bits
// shared by the peers in the cpl bucket).
//
// This is, unfortunately, less efficient than we'd like. We will switch
// to a trie implementation eventually which will allow us to find the
// closest N peers to any target key.
if pds.Len() < count {
for i := cpl + 1; i < len(rt.buckets); i++ {
pds.appendPeersFromList(rt.buckets[i].list)
}
}
// If we're still short, add in buckets that share _fewer_ bits. We can
// do this bucket by bucket because each bucket will share 1 fewer bit
// than the last.
//
// * bucket cpl-1: cpl-1 shared bits.
// * bucket cpl-2: cpl-2 shared bits.
// ...
for i := cpl - 1; i >= 0 && pds.Len() < count; i-- {
pds.appendPeersFromList(rt.buckets[i].list)
}
rt.tabLock.RUnlock()
// Sort by distance to local peer
pds.sort()
if count < pds.Len() {
pds.peers = pds.peers[:count]
}
out := make([]peer.ID, 0, pds.Len())
for _, p := range pds.peers {
out = append(out, p.p)
}
return out
}
// Size returns the total number of peers in the routing table
func (rt *RoutingTable) Size() int {
var tot int
rt.tabLock.RLock()
for _, buck := range rt.buckets {
tot += buck.len()
}
rt.tabLock.RUnlock()
return tot
}
// ListPeers takes a RoutingTable and returns a list of all peers from all buckets in the table.
func (rt *RoutingTable) ListPeers() []peer.ID {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
var peers []peer.ID
for _, buck := range rt.buckets {
peers = append(peers, buck.peerIds()...)
}
return peers
}
// Print prints a descriptive statement about the provided RoutingTable
func (rt *RoutingTable) Print() {
fmt.Printf("Routing Table, bs = %d, Max latency = %d\n", rt.bucketsize, rt.maxLatency)
rt.tabLock.RLock()
for i, b := range rt.buckets {
fmt.Printf("\tbucket: %d\n", i)
for e := b.list.Front(); e != nil; e = e.Next() {
p := e.Value.(*PeerInfo).Id
fmt.Printf("\t\t- %s %s\n", p.String(), rt.metrics.LatencyEWMA(p).String())
}
}
rt.tabLock.RUnlock()
}
// GetDiversityStats returns the diversity stats for the Routing Table if a diversity Filter
// is configured.
func (rt *RoutingTable) GetDiversityStats() []peerdiversity.CplDiversityStats {
if rt.df != nil {
return rt.df.GetDiversityStats()
}
return nil
}
// the caller is responsible for the locking
func (rt *RoutingTable) bucketIdForPeer(p peer.ID) int {
peerID := ConvertPeerID(p)
cpl := CommonPrefixLen(peerID, rt.local)
bucketID := cpl
if bucketID >= len(rt.buckets) {
bucketID = len(rt.buckets) - 1
}
return bucketID
}
// maxCommonPrefix returns the maximum common prefix length between any peer in
// the table and the current peer.
func (rt *RoutingTable) maxCommonPrefix() uint {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
for i := len(rt.buckets) - 1; i >= 0; i-- {
if rt.buckets[i].len() > 0 {
return rt.buckets[i].maxCommonPrefix(rt.local)
}
}
return 0
}