-
Notifications
You must be signed in to change notification settings - Fork 1
/
atss_r50_fpn_1x_dhrec_dota.py
108 lines (107 loc) · 3.55 KB
/
atss_r50_fpn_1x_dhrec_dota.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
_base_ = [
'../_base_/datasets/dota_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize_Rotate', img_scale=(1024, 1024), keep_ratio=True),
dict(type='RandomFlip_Rotate', flip_ratio=0.5, direction='horizontal'),
# dict(type='RandomFlip', flip_ratio=0.5, direction='vertical'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='MeanRecGenerator', resort=True, with_h_bbox=True, with_factor=True),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'r_gt_bboxes_eight', 'r_gt_bboxes_five', 'gt_labels', 'obliquity_factors', 'direction_factors']),
]
model = dict(
type='ATSSRotate',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
# dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
# stage_with_dcn=(False, True, True, True)
),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5),
bbox_head=dict(
type='ATSSDHRecHeadRotate',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
# dcn_on_last_conv=True,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHRBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1, 1, 1, 1]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0),
loss_factor=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)
))
# training and testing settings
train_cfg = dict(
assigner=dict(type='ATSSAssignerRbox', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False,
cls_cfg = dict(
anchor_target_type='obb_obb_rbox_overlap',
anchor_inside_type='center',
assigner=dict(
type='MaxIoUAssignerRbox',
pos_iou_thr=0.3,
neg_iou_thr=0.3,
min_pos_iou=0.5,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)
)
test_cfg = dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.4), # Fast rotated NMS
# nms=dict(type='nms', iou_threshold=0.1), # Original rotated NMS
max_per_img=1000)
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(dataset=dict(pipeline=train_pipeline)),
)
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
log_config = dict(
interval=50,)
total_epochs = 12
work_dir = './work_dirs/atss/Res50_DHRec_1x_dota'