-
Notifications
You must be signed in to change notification settings - Fork 4
/
core.py
530 lines (446 loc) · 19.6 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""
This file contains the core implementation of PseMix, as well as other data mixing strategies.
"""
from typing import Optional
import numpy as np
import torch
from torch import Tensor
import torch.nn.functional as F
from scipy.spatial.distance import cdist
from sklearn.cluster import KMeans
from .utils_diem import DirNIWNet
def augment_bag(bags, labels, alpha=1.0, method='sebmix', **kws):
n_batch = len(bags)
if alpha > .0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.0
idxs = torch.randperm(n_batch)
if n_batch == 1:
return bags, labels, labels, 1.0, idxs
if method == 'psebmix':
n_pseb = kws['psebmix_n'] # pseudo-bag number
ind_pseb = kws['psebmix_ind'] # indictor of pseudo-bag partitions in each bag
prob_mixup = kws['psebmix_prob'] # prob to perform psebmix, otherwise performing simple pseudo-bag sampling
mixup_lam_from = kws['mixup_lam_from']
# recalculate the factor for mixup
# to uniformly normalize lam to the set of [0, 1,..., n]
# the proba of mixup is (n - 2) / n, 0.33, 0.5, 0.6, 0.66 when n = 3, 4, 5, 6
lam_temp = lam if lam != 1.0 else lam - 1e-5
lam_temp = int(lam_temp * (n_pseb + 1))
# mixup pseudo-bags: phenotype-based cutmix
mixed_bags = []
mixed_ratios = []
for i in range(n_batch):
bag_a = fetch_pseudo_bags(bags[i], ind_pseb[i], n_pseb, lam_temp)
bag_b = fetch_pseudo_bags(bags[idxs[i]], ind_pseb[idxs[i]], n_pseb, n_pseb - lam_temp)
if bag_a is None or len(bag_a) == 0:
bag_ab = bag_b
area_ratio = 0.0
cont_ratio = lam_temp / n_pseb
elif bag_b is None or len(bag_b) == 0:
bag_ab = bag_a
area_ratio = 1.0
cont_ratio = lam_temp / n_pseb
else:
if np.random.rand() <= prob_mixup:
bag_ab = torch.cat([bag_a, bag_b], dim=0) # instance-axis concat
area_ratio = len(bag_a) / len(bag_ab)
cont_ratio = lam_temp / n_pseb
else:
bag_ab = bag_a # instance-axis concat
area_ratio = 1.0
cont_ratio = 1.0
mixed_bags.append(bag_ab.unsqueeze(0))
if mixup_lam_from is not None:
if mixup_lam_from == 'area':
temp_mix_ratio = area_ratio
elif mixup_lam_from == 'content':
temp_mix_ratio = cont_ratio
else:
temp_mix_ratio = lam
else:
temp_mix_ratio = lam
mixed_ratios.append(temp_mix_ratio)
lam_new = mixed_ratios
labels_a, labels_b = labels, [labels[idxs[i]] for i in range(n_batch)]
elif method == 'insmix':
# mixup instances: naive cutmix
mixed_bags = []
mixed_ratios = []
for i in range(n_batch):
bag_a = fetch_instances(bags[i], lam)
bag_b = fetch_instances(bags[idxs[i]], 1 - lam)
if bag_a is None:
bag_ab = bag_b
area_ratio = 0.0
elif bag_b is None:
bag_ab = bag_a
area_ratio = 1.0
else:
bag_ab = torch.cat([bag_a, bag_b], dim=0) # instance-axis concat
area_ratio = len(bag_a) / len(bag_ab)
mixed_bags.append(bag_ab.unsqueeze(0))
mixed_ratios.append(area_ratio)
labels_a, labels_b = labels, [labels[idxs[i]] for i in range(n_batch)]
lam_new = mixed_ratios
else:
# NO any mixup
mixed_bags = bags
labels_a, labels_b = labels, labels
lam_new = 1.0
return mixed_bags, labels_a, labels_b, lam_new, idxs
def fetch_instances(X, r=1.0):
if len(X.shape) > 2:
X = X.squeeze(0)
N = len(X)
if isinstance(r, float):
num = int(N * r)
elif isinstance(r, int):
num = r
else:
pass
if num == 0:
return None
idxs = torch.randperm(N)[:num].to(X.device)
X_fetched = X[idxs]
return X_fetched
def fetch_pseudo_bags(X, ind_X, n:int, n_parts:int):
"""
X: bag features, usually with a shape of [N, d]
ind_X: pseudo-bag indicator, usually with a shape of [N, ]
n: pseudo-bag number, int
n_parts: the pseudo-bag number to fetch, int
"""
if len(X.shape) > 2:
X = X.squeeze(0)
assert n_parts <= n, 'the pseudo-bag number to fetch is invalid.'
if n_parts == 0:
return None
ind_fetched = torch.randperm(n)[:n_parts]
X_fetched = torch.cat([X[ind_X == ind] for ind in ind_fetched], dim=0)
return X_fetched
#############################################################################################
# Different ways of dividing pseudo-bags.
#############################################################################################
class PseudoBag(object):
"""General class for generating pseudo-bags.
Args
n (int): pseudo-bag number to divide.
l (int): phenotype number to consider.
"""
def __init__(self, n: int, l: int, clustering_method: str = 'ProtoDiv', **kws):
assert clustering_method in ['DIEM', 'ProtoDiv']
if clustering_method == 'ProtoDiv':
assert 'proto_method' in kws and 'pheno_cut_method' in kws and 'iter_fine_tuning' in kws
self.proto_method = kws['proto_method']
self.pheno_cut_method = kws['pheno_cut_method']
self.iter_fine_tuning = kws['iter_fine_tuning']
assert self.proto_method in ['max', 'mean']
assert self.pheno_cut_method in ['uniform', 'quantile']
elif clustering_method == 'DIEM':
assert 'path_proto' in kws and 'num_iter' in kws
self.DIEM = DirNIWNet(l, **kws)
self.n = n
self.l = l
self.clustering_method = clustering_method
print(f"{clustering_method}-based pseudo-bag dividing: n = {n}, l = {l}.")
def divide(self, bag: Tensor, ptype: Optional[Tensor] = None, ret_pseudo_bag: bool = False):
"""
bag (Tensor): bag of multiple instances with shape of [N, d].
ptype (Optional[None,Tensor]): bag prototype with shape of [*, d].
"""
if len(bag.shape) > 2:
bag = bag.squeeze(0)
# 1. obtain phenotype clusters
label_phe = self.get_phenotype_clusters(bag, ptype=ptype)
# 2. divide pseudo-bags by sampling from each phenotype cluster
label_psebag = torch.zeros_like(label_phe)
for c in range(self.l):
c_size = (label_phe == c).sum().item()
label_psebag[label_phe == c] = self.uniform_assign(c_size, self.n).to(label_psebag.device)
if ret_pseudo_bag:
pseudo_bags = [bag[label_psebag == i] for i in range(self.n)]
return label_psebag, pseudo_bags
return label_psebag
def get_phenotype_clusters(self, bag, **kws):
if self.clustering_method == 'ProtoDiv':
assert 'ptype' in kws
clusters = self.protodiv_clustering(bag, ptype=kws['ptype'])
elif self.clustering_method == 'DIEM':
clusters = self.diem_clustering(bag)
else:
clusters = None
return clusters
########################################################################
##### The following are methods used for DIEM-based clustering #####
########################################################################
def diem_clustering(self, bag):
bag = bag.unsqueeze(0) # [B, N, d], B = 1
prior_m, prior_V = self.DIEM()
prior = (prior_m.to(bag), prior_V.to(bag))
pi, mu, Sigma, qq = self.DIEM.map_em(
bag, prior=prior
)
qq = qq[0, :, :] # each row: coef distribution over compenents
_, label_phe = torch.max(qq, dim=1) # shape: (N, )
return label_phe
########################################################################
##### The following are methods used for ProtoDiv-based clustering #####
########################################################################
def protodiv_clustering(self, bag, ptype=None, metric='cosine'):
# calculate distances
dis, limits = self.protodiv_measure_distance(bag, ptype=ptype) # [N, ], tuple
# stratified random dividing
# the first step: cut into phenotype clusters
if self.pheno_cut_method == 'uniform':
step = (limits[1] - limits[0]) / self.l
label_phe = ((dis - limits[0]) / step).long().clamp(0, self.l - 1)
elif self.pheno_cut_method == 'quantile':
data = dis.cpu().numpy()
bins = np.quantile(data, [i/self.l for i in range(self.l+1)])
bins[0], bins[-1] = bins[0] - 1e-5, bins[-1] + 1e-5
label_phe = np.digitize(data, bins) - 1
label_phe = torch.LongTensor(label_phe).to(dis.device)
else:
pass
# if fine-tuning phenotype clusters
if self.iter_fine_tuning > 0:
ind_cluster = label_phe
for i in range(self.iter_fine_tuning):
centroids, _ = self.mean_by_label(bag, ind_cluster)
if metric == 'cosine':
norm_centroids = F.normalize(centroids, p=2, dim=-1) # [l, d]
norm_X = F.normalize(bag, p=2, dim=-1)
dis = torch.mm(norm_X, norm_centroids.T) # [N, d] x [d, l] -> [N, l]
else:
raise NotImplementedError("cannot recognize {}".format(metric))
_, new_ind = torch.max(dis, dim=1)
ind_cluster = new_ind
label_phe = ind_cluster
return label_phe
def protodiv_measure_distance(self, X, ptype=None, metric='cosine'):
# process prototype
if ptype is not None:
ptype = ptype
elif self.proto_method == 'mean':
ptype = torch.mean(X, dim=0)
elif self.proto_method == 'max':
ptype, _ = torch.max(X, dim=0)
norm_ptype = F.normalize(ptype, p=2, dim=-1)
assert X.shape[-1] == norm_ptype.shape[-1]
if metric == 'cosine':
norm_X = F.normalize(X, p=2, dim=-1)
dis = torch.mm(norm_X, norm_ptype.view(-1, 1)).squeeze() # [N, 1] -> [N, ]
limits = (-1, 1)
else:
raise NotImplementedError("cannot recognize {}".format(metric))
return dis, limits
@staticmethod
def uniform_assign(N, num_label):
L = torch.randperm(N) % num_label
rlab = torch.randperm(num_label)
res = rlab[L]
return res
@staticmethod
def mean_by_label(samples, labels):
'''
select mean(samples), count() from samples group by labels, ordered by labels ASC.
'''
weight = torch.zeros(labels.max()+1, samples.shape[0]).to(samples.device) # #class, N
weight[labels, torch.arange(samples.shape[0])] = 1
label_count = weight.sum(dim=1)
weight = F.normalize(weight, p=1, dim=1) # l1 normalization
mean = torch.mm(weight, samples) # #class, F
index = torch.arange(mean.shape[0])[label_count > 0]
return mean[index], label_count[index]
class PseudoBag_Kmeans(object):
"""Class for generating pseudo-bags via Kmeans.
Args
n (int): pseudo-bag number to divide.
l (int): phenotype number to consider, or cluster number.
"""
def __init__(self, n: int, l: int):
self.n = n
self.l = l
print("Kmeans-based pseudo-bag dividing: n = {}, l = {}".format(n, l))
def divide(self, bag: Tensor, ret_pseudo_bag: bool = False):
"""
bag (Tensor): bag of multiple instances with shape of [N, d].
"""
if len(bag.shape) > 2:
bag = bag.squeeze(0)
# stratified random dividing
# 1. cut into phenotype clusters
feats = np.ascontiguousarray(bag.cpu().numpy(), dtype=np.float32)
kmeans = KMeans(n_clusters=self.l, random_state=0).fit(feats)
label_phe = kmeans.labels_.astype(np.int64)
label_phe = torch.LongTensor(label_phe).to(bag.device)
# 2. sample from each phenotype cluster
label_psebag = torch.zeros_like(label_phe)
for c in range(self.l):
c_size = (label_phe == c).sum().item()
label_psebag[label_phe == c] = self.uniform_assign(c_size, self.n).to(label_psebag.device)
if ret_pseudo_bag:
pseudo_bags = [bag[label_psebag == i] for i in range(self.n)]
return label_psebag, pseudo_bags
return label_psebag
@staticmethod
def uniform_assign(N, num_label):
L = torch.randperm(N) % num_label
rlab = torch.randperm(num_label)
res = rlab[L]
return res
class PseudoBag_Random(object):
"""Class for generating pseudo-bags via random sampling.
Args
n (int): pseudo-bag number to divide.
"""
def __init__(self, n: int):
self.n = n
print("Kmeans-based pseudo-bag dividing: n = {}".format(n))
def divide(self, bag: Tensor, ret_pseudo_bag: bool = False):
"""
bag (Tensor): bag of multiple instances with shape of [N, d].
"""
if len(bag.shape) > 2:
bag = bag.squeeze(0)
# sample from all instances
c_size = bag.shape[0]
label_psebag = self.uniform_assign(c_size, self.n).to(bag.device)
if ret_pseudo_bag:
pseudo_bags = [bag[label_psebag == i] for i in range(self.n)]
return label_psebag, pseudo_bags
return label_psebag
@staticmethod
def uniform_assign(N, num_label):
L = torch.randperm(N) % num_label
rlab = torch.randperm(num_label)
res = rlab[L]
return res
#############################################################################################
# - ReMix: A General and Efficient Framework for MIL-based WSI Classification, MICCAI 2022.
# - Following the official implementation, https://github.com/Jiawei-Yang/ReMix
#############################################################################################
DIM_PATCH_FEAT = 1024
def mix_aug(src_feats, tgt_feats, mode='replace', rate=0.3, strength=0.5, shift=None):
assert mode in ['replace', 'append', 'interpolate', 'cov', 'joint']
auged_feats = [_ for _ in src_feats.reshape(-1, DIM_PATCH_FEAT)]
tgt_feats = tgt_feats.reshape(-1, DIM_PATCH_FEAT)
closest_idxs = np.argmin(cdist(src_feats.reshape(-1, DIM_PATCH_FEAT), tgt_feats), axis=1)
if mode != 'joint':
for ix in range(len(src_feats)):
if np.random.rand() <= rate:
if mode == 'replace':
auged_feats[ix] = tgt_feats[closest_idxs[ix]]
elif mode == 'append':
auged_feats.append(tgt_feats[closest_idxs[ix]])
elif mode == 'interpolate':
generated = (1 - strength) * auged_feats[ix] + strength * tgt_feats[closest_idxs[ix]]
auged_feats.append(generated)
elif mode == 'cov':
generated = auged_feats[ix][np.newaxis, :] + strength * shift[closest_idxs[ix]][np.random.choice(200, 1)]
auged_feats.append(generated.flatten())
else:
raise NotImplementedError
else:
for ix in range(len(src_feats)):
if np.random.rand() <= rate:
# replace
auged_feats[ix] = tgt_feats[closest_idxs[ix]]
if np.random.rand() <= rate:
# append
auged_feats.append(tgt_feats[closest_idxs[ix]])
if np.random.rand() <= rate:
# interpolate
generated = (1 - strength) * auged_feats[ix] + strength * tgt_feats[closest_idxs[ix]]
auged_feats.append(generated)
if np.random.rand() <= rate:
# covary
generated = auged_feats[ix][np.newaxis, :] + strength * shift[closest_idxs[ix]][np.random.choice(200, 1)]
auged_feats.append(generated.flatten())
return np.array(auged_feats)
def remix_bag(bags, labels, mode='joint', semantic_shifts=None):
N = len(bags)
list_labels = [l.item() for l in labels]
ret_bags = []
for idx_bag, cur_bag in enumerate(bags):
# randomly select one bag from the same class
candidate_idxs = [_i for _i in range(N) if list_labels[_i] == list_labels[idx_bag]]
selected_id = np.random.choice(candidate_idxs)
# lambda parameter
strength = np.random.uniform(0, 1)
new_bag = mix_aug(
cur_bag.cpu().numpy(), bags[selected_id].cpu().numpy(),
shift=semantic_shifts[selected_id] if mode in ['joint', 'cov'] else None,
strength=strength, mode=mode
)
new_bag = torch.Tensor([new_bag]).reshape(-1, DIM_PATCH_FEAT).unsqueeze(0).cuda()
ret_bags.append(new_bag)
return ret_bags, labels
#########################################################
# ProtoDiv's Implementation
#########################################################
def generate_pseudo_bags(bags, n_pseb, ind_pseb):
"""
n_pseb: pseudo-bag number
ind_pseb: indictor of pseudo-bag partitions in each bag
"""
n_batch = len(bags)
# sampling one pseudo-bag from each bag
sampled_bags = []
for i in range(n_batch):
new_bag = fetch_pseudo_bags(bags[i], ind_pseb[i], n_pseb, 1)
sampled_bags.append(new_bag.unsqueeze(0))
return sampled_bags
######################################################################
# Mixup's Implementation
# The instance number of two bags are aligned by cropping the larger
# - RankMix (CVPR, 2023):
# Given instance scores, sizes are aligned by Ranking + Cropping
# the lowest instances from the larger.
# - Vallina Mixup:
# Without instance scores, sizes are aligned by random cropping
# the larger.
######################################################################
def rank_instances(bag, ins_score):
bag = bag.squeeze(0)
ins_score = ins_score.squeeze()
assert len(bag) == len(ins_score), "Sizes are not aligned."
_, idx_rank = torch.sort(ins_score, descending=True)
bag = bag[idx_rank] # place the instances with largest scores at first
return bag
def mixup_bag(bags, labels, scores=None, alpha=1.0):
n_batch = len(bags)
if alpha > .0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.0
idxs = torch.randperm(n_batch)
if n_batch == 1:
return bags, labels, labels, 1.0, idxs
# mixup two bags
mixed_bags = []
mixed_ratios = []
for i in range(n_batch):
bag_a = bags[i].squeeze(0)
bag_b = bags[idxs[i]].squeeze(0)
num_a, num_b = bag_a.shape[0], bag_b.shape[0]
num_min = min(num_a, num_b)
if scores is not None:
bag_a = rank_instances(bag_a, scores[i])
bag_b = rank_instances(bag_b, scores[idxs[i]])
bag_ab = lam * bag_a[:num_min] + (1.0 - lam) * bag_b[:num_min]
else:
if num_a <= num_b:
bag_b = fetch_instances(bag_b, num_min)
else:
bag_a = fetch_instances(bag_a, num_min)
bag_a = bag_a[torch.randperm(num_min), :]
bag_b = bag_b[torch.randperm(num_min), :]
bag_ab = lam * bag_a + (1.0 - lam) * bag_b
mixed_bags.append(bag_ab.unsqueeze(0))
mixed_ratios.append(lam)
labels_a, labels_b = labels, [labels[idxs[i]] for i in range(n_batch)]
lam_new = mixed_ratios
return mixed_bags, labels_a, labels_b, lam_new, idxs