-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer_ddp.py
379 lines (313 loc) · 14.6 KB
/
trainer_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import time
from functools import partial, reduce
import torch
import torch.nn as nn
import torchvision.transforms as T
import numpy as np
import cv2
import random
import os.path as osp
import argparse
from scipy.stats import spearmanr, pearsonr
from scipy.stats.stats import kendalltau as kendallr
import numpy as np
from time import time
from tqdm import tqdm
import pickle
import math
import yaml
from collections import OrderedDict
from functools import reduce
from thop import profile
import copy
import os
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from models.model import VQA_Network
import sys
sys.path.append('.')
sys.path.append('..')
#sys.path.append('...')
import datasets
class Trainer:
def __init__(
self,
args,
config,
#device,
#local_rank,
#world_size
):
super().__init__()
self.args = args
self.config=config
self.gpu_list=[int(item) for item in self.args.gpu_id.split(',')]
#self.device = device
#self.local_rank= local_rank
#self.world_size= world_size
self.best_results=-1,-1,-1,1999
self.best_results_ema = -1,-1,-1,1999
self.key_list = self.config['model']['type'].split(',')
def build_models(self,device,local_rank):
self.model = VQA_Network(self.config).to(device)
if self.config["load_path"] is not None:
state_dict = torch.load(self.config["load_path"], map_location=device)
if 'state_dict' in state_dict:
state_dict= state_dict['state_dict']
else:
state_dict= state_dict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:]#'module.'+ k # add `module.`
new_state_dict[name] = v
msg=self.model.load_state_dict(new_state_dict, strict=False)
print('load from LSVQ',msg)
if self.config["ema"]:
from copy import deepcopy
self.model_ema = deepcopy(self.model)
else:
self.model_ema = None
if self.config['ddp'] == True:
# DistributedDataParallel
self.model.to(device)
self.model= torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = DDP(self.model, device_ids=[local_rank], output_device= local_rank)
self.model_ema.to(device)
self.model_ema= torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model_ema)
self.model_ema = DDP(self.model_ema, device_ids=[local_rank], output_device= local_rank)
else:
self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu_list)
self.model_ema = torch.nn.DataParallel(self.model_ema, device_ids=self.self.gpu_list)
#self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu_list)
def build_optimizer(self):
param_groups=[]
for key, value in dict(self.model.named_children()).items():
if "backbone" in key:
param_groups += [
{
"params": value.parameters(),
"lr": self.config["optimizer"]["lr"]
* self.config["optimizer"]["backbone_lr_mult"],
}
]
else:
param_groups += [
{"params": value.parameters(), "lr": self.config["optimizer"]["lr"]}
]
self.optimizer = torch.optim.AdamW(
lr=self.config["optimizer"]["lr"],
params=param_groups,
weight_decay=self.config["optimizer"]["wd"],
)
warmup_iter = 0
warmup_iter += int(self.config["warmup_epochs"] * len(self.train_loader))
max_iter = int((self.config["num_epochs"] + self.config["l_num_epochs"]) * len(self.train_loader))
lr_lambda = (
lambda cur_iter: cur_iter / warmup_iter
if cur_iter <= warmup_iter
else 0.5 * (1 + math.cos(math.pi * (cur_iter - warmup_iter) / max_iter))
)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lr_lambda,)
def build_datasets(self):
if 'val' in self.config["data"]:
val_dataset = getattr(datasets, self.config["data"]["val"]["type"])(self.config["data"]["val"]["args"],None)
#self.val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=1, num_workers=self.config["num_workers"], pin_memory=True,)
if self.config['ddp']:
self.valid_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset,shuffle=False,)
self.val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=self.config["num_workers"], pin_memory=True,sampler=self.valid_sampler,
)
else:
self.val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=self.config["num_workers"], pin_memory=True,
)
if 'train' in self.config["data"]:
train_dataset = getattr(datasets, self.config["data"]["train"]["type"])(self.config["data"]["train"]["args"],None)
if self.config['ddp']:
#init_seeds(42 + local_rank)
self.train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,shuffle=True,)
self.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=self.config["batch_size"], num_workers=self.config["num_workers"], sampler=self.train_sampler,
)
else:
self.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=self.config["batch_size"], num_workers=self.config["num_workers"], shuffle=True,
)
def train_eval_all_epoches(self,epoch,device, local_rank ,world_size):
self.model.train()
if self.config['ddp']:
self.train_sampler.set_epoch(epoch)
for i, data in enumerate(tqdm(self.train_loader, desc=f"Training in epoch {epoch}")):
self.optimizer.zero_grad()
for key in self.key_list:
if key in data:
data[key] = data[key].to(device)
y = data["label"].float().detach().to(device).unsqueeze(-1)
if self.config['model']['type'] == 'KSVQE':
y_pred,dis_contra_loss = self.model(inputs=data, reduce_scores=False)
print('dis_contra_loss',dis_contra_loss)
#if len(dis_contra_loss)>1:
# dis_contra_loss = dis_contra_loss.mean()
#print('dis_contra_loss',dis_contra_loss)
loss = 0.3*dis_contra_loss
else:
y_pred = self.model(inputs=data, reduce_scores=False)
loss=0
for y_pred_idx in range(len(y_pred)):
p_loss = self.plcc_loss(y_pred[y_pred_idx], y)
print('p_loss',p_loss.shape)
print('p_loss',p_loss)
r_loss = self.rank_loss(y_pred[y_pred_idx], y)
loss += p_loss
print(
"train",list(data.keys())[y_pred_idx],
"train/plcc_loss", p_loss.item(),
)
print("train/total_loss",loss.item())
print('stop')
loss.backward()
print('stop')
self.optimizer.step()
self.scheduler.step()
if self.model_ema is not None:
model_params = dict(self.model.named_parameters())
model_ema_params = dict(self.model_ema.named_parameters())
for k in model_params.keys():
model_ema_params[k].data.mul_(0.999).add_(
model_params[k].data, alpha=1 - 0.999
)
self.model.eval()
self.best_results = self.inferece_per_epoch(self.model,self.best_results,device, local_rank ,world_size,suffix='n')
self.best_results_ema = self.inferece_per_epoch(self.model_ema,self.best_results_ema, device, local_rank ,world_size,suffix='s')
return self.best_results,self.best_results_ema
def inferece_per_epoch(self,model,best, device, local_rank ,world_size,suffix):
best_s, best_p, best_k, best_r = best
results = []
all_predictions=[] #for ddp gathering
all_labels=[] #for ddp gathering
for i, data in enumerate(tqdm(self.val_loader, desc="Validating")):
result={}
for key in self.key_list:
if key in data:
data[key] = data[key].to(device)
b, c, t, h, w = data[key].shape
data[key] = (
data[key]
.reshape(
b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
)
.permute(0, 2, 1, 3, 4, 5)
.reshape(
b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
)
)
with torch.no_grad():
if self.config['model']['type'] == 'KSVQE':
result["pred"],_ = model(inputs=data,reduce_scores=True)
result["pred"] = result["pred"]
else:
result["pred"] = model(inputs=data,reduce_scores=True)
result["label"] = data["label"].item()
results.append(result)
# Gather predictions from all GPUs to the main process
all_predictions.append(result["pred"].mean(0))
all_labels.append(data["label"])
del data
all_predictions = torch.cat(all_predictions).to(device)
print('all_predictions shape: ',all_predictions.shape)
all_predictions_list = [torch.zeros_like(all_predictions) for _ in range(world_size)]
dist.all_gather(all_predictions_list, all_predictions)
#all_labels = [torch.tensor(all_labels).to(device)]
all_labels = torch.cat(all_labels).to(device)
all_labels_list = [torch.zeros_like(all_labels) for _ in range(world_size)]
dist.all_gather(all_labels_list, all_labels)
# Main process collects predictions from all GPUs
if local_rank == 0:
all_predictions_list = torch.cat(all_predictions_list)
print('length of all_predictions',len(all_predictions_list))
all_labels_list = torch.cat(all_labels_list)
## generate the demo video for video quality localization
gt_labels = [r.cpu().numpy() for r in list(all_labels_list)]
pr_labels = [r.cpu().numpy()for r in list(all_predictions_list)]
pr_labels = self.rescale(pr_labels, gt_labels)
s = spearmanr(gt_labels, pr_labels)[0]
p = pearsonr(gt_labels, pr_labels)[0]
k = kendallr(gt_labels, pr_labels)[0]
r = np.sqrt(((gt_labels - pr_labels) ** 2).mean())
print('SRCC{}PLCC{}KRCC{}RMSE{}'.format(s,p,k,r))
if s + p > best_s + best_p :
state_dict = model.state_dict()
save_name=self.config["name"] + "_head_" + self.args.test_set
torch.save(
{"state_dict": state_dict, "validation_results": best,},
f"{self.args.resume}/{save_name}_{suffix}_finetuned.pth",
)
best_s, best_p, best_k, best_r = (
max(best_s, s),
max(best_p, p),
max(best_k, k),
min(best_r, r),
)
'''print(
{
f"val_{suffix}/best_SRCC-{suffix}": best_s,
f"val_{suffix}/best_PLCC-{suffix}": best_p,
f"val_{suffix}/best_KRCC-{suffix}": best_k,
f"val_{suffix}/best_RMSE-{suffix}": best_r,
}
)'''
return best_s, best_p, best_k, best_r
def inferece(self):
output_results=[]
for i, data in enumerate(tqdm(self.val_loader, desc="Validating")):
result={}
self.model.eval()
for key in self.key_list:
if key in data:
data[key] = data[key].to(self.device)
b, c, t, h, w = data[key].shape
data[key] = (
data[key]
.reshape(
b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
)
.permute(0, 2, 1, 3, 4, 5)
.reshape(
b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
)
)
with torch.no_grad():
#pred = self.model(inputs=data,reduce_scores=True).cpu().numpy()
if self.config['model']['type'] == 'KSVQE':
pred,_ = self.model(inputs=data,reduce_scores=True)
pred = pred.cpu().numpy()
else:
pred = self.model(inputs=data,reduce_scores=True).cpu().numpy()
output_results.append((data["video_name"][0],pred.mean(0).item()))
with open('output.txt',"w") as file:
for item in output_results:
line =f"{item[0]},{item[1]}\n"
file.write(line)
def rank_loss(self,y_pred,y):
ranking_loss = torch.nn.functional.relu(
(y_pred - y_pred.t()) * torch.sign((y.t() - y))
)
scale = 1 + torch.max(ranking_loss)
return (
torch.sum(ranking_loss) / y_pred.shape[0] / (y_pred.shape[0] - 1) / scale
).float()
def plcc_loss(self,y_pred, y):
sigma_hat, m_hat = torch.std_mean(y_pred, unbiased=False)
y_pred = (y_pred - m_hat) / (sigma_hat + 1e-8)
sigma, m = torch.std_mean(y, unbiased=False)
y = (y - m) / (sigma + 1e-8)
loss0 = torch.nn.functional.mse_loss(y_pred, y) / 4
rho = torch.mean(y_pred * y)
loss1 = torch.nn.functional.mse_loss(rho * y_pred, y) / 4
return ((loss0 + loss1) / 2).float()
def rescale(self,pr, gt=None):
if gt is None:
pr = (pr - np.mean(pr)) / np.std(pr)
else:
pr = ((pr - np.mean(pr)) / np.std(pr)) * np.std(gt) + np.mean(gt)
return pr