Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Why is the flux realism sampler code hidden in a zipped blockly import? #1733

Closed
RandomGitUser321 opened this issue Sep 7, 2024 · 12 comments

Comments

@RandomGitUser321
Copy link

I was having a hell of a time trying to figure out what the new "flux realism" sampler was (I'm guessing it's similar to comfyui's dpmpp_2s_ancestral that was semi-recently adapted to work with flux and that also takes 2x as long per step), but then I realized it was hidden in the zipped up blockly code.

With all the scammy stuff that's been going around github lately, stuff like this makes people think of one of two things:

A) People hiding malware/exploits within the zipped code
B) People "borrowing" other people's code and making it harder for the average person to easily spot and point out

Not directly accusing you of either of these, just saying that moves like this likely look suspicious to a lot of people. I know it's easy to unzip it and inspect the code to see, but why do it like this? Do you need help porting it to join the other samplers in the regular codebase?

@zdaar
Copy link

zdaar commented Sep 7, 2024

It looks like malware. Even dezipped it is highly obfuscated. Not a good look

@FurkanGozukara
Copy link

It looks like malware. Even dezipped it is highly obfuscated. Not a good look

What the hack?

@RandomGitUser321
Copy link
Author

RandomGitUser321 commented Sep 7, 2024

Well blockly is a node based coding system, so a lot of the code is just for the graph of the nodes and all their properties. If you've ever looked at a complicated comfyui workflow's json, it would look confusing/obfuscated as well. You can dump the code and look through it yourself for any glaring references to things using something like this:

import base64
import gzip

from io import BytesIO

google_blockly_context = r'H4sIACVA3GYC/+19aXfjxpXoZ+tXaHjOjERbVlBAYVObPnESJ+OZxMmzM5mX0XB42BK7mzFbUkTKbqeH77e/QlWBKGxEbQAB8vqD0SIKhcKtW3df3j4+vl0tZq9Xj3c/rH6e/e5Xs7fP86d355Pz54uLi9uzc/LfR/r/5L8RuY99b3RD/4Ww44+ucjdd5ETk7u3ux/zz1fPEIRamyU0XodJs9bOKTyI3Sqd3KiYXh/phuPugUeXIbenXae6X7ZXS96Iw8Gs+OHRdMqj604rAD2u+K5uHAaL8TVuj1XtRULP6KIyT7ZpW30Ve4O657ZJp6+/GKNmkh5fVqmZy13X2DohjZ8/0vhfuW1oVVsvhYeOuy+6+KhZUY0M8qh28rUb9K7OPdnzc8NEuisJa4Da/r/q9XgNUdmgTYD9dajDa+8i29u60Fcj1AV1cF/ClDl8woEsRXXzAljpsCQFbitjiAXGpRRcXqEtZkgXyUo8vPuBLEV8CQJdaWTcCdCmiCwZ0qUUXB9ClpBoButQyIxB2y8ILcKNafPGAvJTJC7CjenYE9KVMXxDgSy0/Astumb5EgC+1ll3gR2X6AuhSy45iQJcSeXEAX2rFXQ/wpeQLCAFfasUXoC9lYx3wo1p88UF8KYsvoE7X0xfgR2X64nWNL9VRdeLg+ui63MbyKLvGj433uAwb3lEfqpd7wZ6QvdyK94Xu5SasDeETR9WH8uUP356QPt3D14C6qiisf8KrtJSGU77/pO/BcG1g7aeQypRSfh1mcK2S6PFI6tFt46hppzvQBbrGfqCEsKH0e8rv8oNAcRNVvqsGiBF2FF5ahT2BxvMu2q0ARyPpx7dq4BHe4iFJHFfYbBlWpXe0zY63wRGXO+YNPLa8joBxPqDgLVHwJp2ptxRcEv5BrEm+I99VId+Ra0K/u9hAlY+JkRJ5op8guxCV458kSA2ETrqedTp5ZmFPpUV+YxqEQ0Ukdj1DCURewjKRtOxgSxVnjUdKU2w1vlVV0NA7SDU0OsA6UMoICtZautkn6FpR5GVuhj3ak22vegERHDnWIGK2Ljtn06IUbHnXdqtxguRAfI7Mp3IdCqvE8DR0PLR+Mn2Do6n15PSs3fdMdVikrNqlqV7jIFTBPwnlQ9Ka4+Hm7wJjExibDmVsck/b2CSrQ4KxaZDGJjceprHJdyOg4Aen4L5jRsH9Tig4jk+agrsxUPCyBOi6ffWOy+zXVjdKZn8kQuCG9ZvVx1iaZhKtQprNo/Wbwpck1ipLWXQwUl41z6vgkSlGTmU2qYlSnHwuyAkU4oAD3cmB9j040X1Iv4ATbXSi5bQmMylOQUsq7678c2J4kwy7lTU/ZFqQ229SBtq2NXwywCtzbdt3T9teegzBecDcLTD3wAPmDsy9I+YeAHMH5t4+c2/CsyNn7oEHzB2YO334BOo+hdiVYO6R47TGNnTzC0MrPLbLFccHW/HRs2blcMRC+KHTBWMNnNYYazssplfHR2aPWlqxtgU+MLbAA3OuY84+MOfeMucDntXhMWdd6hKEg1syDkEE6qkIFLogAgF3tsWdfQTcGVRne4wjjIYmULjDA3IQg9QG8gSYVIZnUtE+8XhoJx6DZtkBtx0cjJ2jFA9A+dBTPsA0CKZBMA2CafBomc7pyHsDVKP94WHy4KwrCKhF+4gcYTh7HSwZggRa0wQC6MSndESG0WoCukVonZ9OKqJpS6YRtIuwInZUydAxtIuwLhshwNfW8NUDfK17SZduR8WEp3IlE323nj/sFCQ1h60OVljbtTozbaA5h2btToXdrHmbbMMYOcpBqQcUsewPUxhsz6u2O6bgQClJOdPKsK/woGpbALNE21Cv5mQGdEcn0zZC2AL9VW+PocutrfOA6mOnP49AnUON3gtbTTDqdt9Qx1vbWGALG2xJJTalFFt6mIKO5h28e4Qo06KDdB8xPhHmJ6N6x5sjGKTptmSUQzdfaS75tKQut4zuQ4ZgbAmCxrNMzw7z/qkpr1LtXGK27KmugKWzzG0bccwgH4N8DPIxyMeHlI9DH+RjkI9BPgb5GORjkI+7kI+PsAGzZJcZUwmh5/3eoFWkPYEXHPdmwhk47ofluHfBcX8OjvvTc9xHvqvCESLXiCUo2Q8KdgJsn6hHMVIi6hRggWRlapXzH4d4KJWpPfttJ0DUBlEbenLyxzzoyWmPnRRYSAxJRyeadNS2GKXgDdX2gup4P038Xbr+raNTZrG5Mut1qswG7ZVR1fJSHYO3Xt8va8Mfay1ywBZ+W8JzTXyvw3t0WvELnj0kkKl8Y3HjjjmCw/B0VmyOG48gysEK9tg/RzVbJmslMlPDDexO9d8AXmK1ZakvZwsWL7B4gR9hUHqseeNNZS5uwLWHoNV55qo5Vgwe7Qv9b9lH5brRsH1U6mK9iSjfhtEo8MyNRoHTutFIsc68mQQG7kAQjkA4AuEIhKNOhCMfhCMQjkA4AuEIhCMQjkA4AuEIhCP53qAgHIFwBMIRCEcgHKlGJ5+UcNTfQHIZORYCyfUCySMfAslPM5Dcwe6oRzzE9VzlNGkKvdH7x/uX1WI9e/P4/HZxvXxYbpbz1fIf883y8UF1ygh1pAEgN9oVptGVtPww1Mhka1UFiKj06dhUALpHqLfP8/vl4xBQJzZHHdVaNKeAOkTNU9x9BZNR/5Q9CzaIMOhMS1Neqo2UCc9adcMuovp79MWxRvCwWuRtN1q7GjlIZcQTJWbydvC8lc/tCTVT5ok6HxsjLWpG1+c4ig5xnUOiauvsIfXRKVWoSH1OgoSAfc+mfQ9htwOTrOcrbhmmmdz7TRt79BH1B5XsCmY6kzYum+J0q+TNd9ombwra3mFs5JInLnIlLOpgJK6Yl6nmYCQGI7FFYq7P1QK/c0Fk4KYZ7B23aSZ2kAk31VU6beGKLbzZc2ggib8F1DVHY/vi4T4q4J9mEr9JMZbdAXLDyKQrjUPFAWsVc4w6l+QFu4Rnd1QcoY9G3V7YVuQqE+cxU6FCsS292bNSfeywyidYyQaUIgBWMrCS2XG6emAlO3IrWeKqarLwIEvWESH8xvVk+5xk8TZhQ0HLPfBtA3L7o6TEqKjN3+/fX89fNo+HgHQUKwM6ckbtIPK+QKWjqC2NOrb2+gFqwikn8mWsvakKcJDCzB00PZLX/fJbGvujnvVj2W/gzx23RkO/tj1n9JUsND+MbLHkZleDOFrG5ZAnmRKuh9wLGl0QOera6IrQllwH5RIw1LricARGilbUFitpi75jnraIHHTkxo4DHDvz9PM4NEs/j+DkgnnxhE7cIX3fem0K7Jqg9P25Nny5bbZKCF17rRKi7lslGPttrXrYjVxyFeoaPog/vM8g8Q1apuv5rqcm557ZIbRXbBaOMFov/7EwhL7tkAbsupaCGiLHMQ7YsPeVbWH/HuIQjazMvDWeZXqoiJKzbp7aGmuBYXiKxWtApbGWiOaBSgMqDag0B1Bp3IOpNAMWPO8XPy7v+iZ6thBN6+ERyD4NJwghDDUhWuDx6vgDomHfRMM++anc0XHEuu2NL5PEv6MK+kCOA1EfVQ98ddBgjtGvRkqxHKNfj04mlOMAAfTDr7IcuuZsII6PW1Y73pbnvmNP6VUOWrGg9YpIiHosCSuvTE+VNlOhbaGo/nGxdWSsHxvbR8fm8TE4QlWmq3DU34bXuqdi8/MTHAo4FPrL0DGz9P1UvF08LJ7nm8fnA5+MPks0bmfb3lbdwD6aUUyTABsqHkXxcRfUQi4aekWt/V/7QQIc3p5AFqjX1V97pGYXF+T0LglNzlug7CXQtX95yv38lB2SEmzi6Ozn8gXCLHRl7GIP5T9GqGEUhL4CFJRrFhkJhCZJOiWBz7N1EoAW6W2fbPX03tGio2oP28UGtt3B0wncYbfwVI8DL7pw8eikO0t6WJkXeKdd7hUh/7hdeeRbTSKvPB8fbd4YcuLBJ47hyLEGE9uRpBas7abirm0xuAVs2H2iEyRH7XNkwZ/g+J5KP5Qe47f1M49COPMtnvk+Ro/D2RzG2Yy9zpOWT7DZHg5CpV5Zw27T3oHBFHvK8cYHsFLIFtFSsFJ4cWzwLWqNKLSbT5jm1Zvk0FvJP3QH25NPuyWAdhsA01YnFvtqYu2K0CYVG2yFqHj24lM6jCRq25AjIDRysU5pNN3eFofv2dp5AA74k/R2VrZHQe/8Sa7bfm4Y8gIFYS0wkW/Uujpbkm/Ug25NTAF9zdKM2q8jkzMeqlS5VEUJjb7XFASeQif5qeKidFpdG2OXlrGhaPwLBlEgRvAXamtXSm45XZdcf4iPXpkW0xIt1vwdtmK6S6QpGHVVy8KgHot+4zpDyu1G7VFudXCog0GBnjDz26Dl0S30o9YLn0cxhM8nZF5iVARR9vaj7DvQ7DqNWj6I6brLJhradl75sGmLdl5DyCDkHqhLQQF4MY67izk/hIJgulEual1cG1rJU+QGrdo6+mEUikMbpbvaqw7bqowPcnFrcrFz3HLx+8f7xaoJJI3C83r59v183TRq8WHzPJ/Nn982jrybr1av53c/NI27X67nr1eLgcrjVkVoT7YGmrzb1bL75jRXqIuakPNcI4l7kPPclh3ODSHn2Ta+ug7ga1v46jmAr9bx1QV8bQtfUQz4ahtfPQT42ha++kBfbeOrB+Jra+gauoCudS/BKkGNgsPBwypFblRTwQ/oKQjdVhwFJ1wnIYxPsTXfFMg5kHMg50DOj42cRz6QcyDnQM6BnAM5PwZyHgA5B3IO5LzHtkGZOD1AVz10RWDKrn+JZjvMOAJ8bQtfMYRi1L/k2FP0TYPg4/4lm3uyvkSKsgNINrdRYMU7lVTzKEDKOT/S3XQrVNzjSY21FzICnPjQO3CEjWD8QEnVOVD7hRDZb7+gmgw2lLxO690hpC07QKD0ttdHQKD6QKAO2KKphUZXnRK4EA+t5qpRxwzTuupt9oo16p1gof28olJaUgAUCw7bsow1W8uUOg/pqX16T0xBODhiOyK0sax9ieuEKhVhmtOujXnoaPX6fm69QVtzlnPxCZmM59LHymQ/l17UWJmo+ISvZBeyUSbxEJV8DlqX/LgKJSIUWaqU6PpQKbEEHs36/bsJ7JQ7t1H6NY5aq3euXSzLQQcolkVEGmdkggtRqGOxihA+fkwAY/5hbWU+iMMDEodpXSGQh/slD59a2XBlUdxYHLe1CCsLadcqpspqLZgItWuRWpNdzdlak87jBZ3ZGnWrLmrUNLW6AXaAbwPw2y7r2XvhwOvZg2zckmyMByobYymBhNWLCjqu9iFhfd/K1hx0o+OO0omcYTuxT95ma4uHItS5nfVYOmmqRFmbyX0DskyrS/mnY5luy6MvvQLFVIK04vPV4Krwe+5ho/2ntiQRqZrDpnIsUg2HC+JDez1Q6OCDuT1s1G9ye+P/UkAwW0cc+W5kRKitmPm0pDgbklzVeehrWCHy4s6NhkaCopmwaBNNbKKLfWG2jnW6mvttuO9W998OHrSFD23gRStkpQFV3Njy3ALZCdDIytRbi1tlCyvtYmf1zqsH+UuJT5pJAN1Coj1aKXEosDOy/prtFUB8D8eKAOJHgONWZ5ye9WtdU5sSg45Rz/6nTW0IxaafovcJUxO1T3fJ2340O2TFFewWbdC3OwWqEbc66v9RlRb0nM5KCx4k19OSX0slDd+A6R9duBn2rESb2TTAeFbML8ZeO0Ox0Ea+bOuw8fCoY1ZsJ7QQufgoQwtxX7OY9YvOKq9Mz9ogHwluT09rL8I07izQ4KDJ7G2Lm3Lhg3kaoxBGqI9B1qVEPIxqd8NSHA4ZcnaQyJbhpqhCHom9xVhbkGVtw6bGYV+ytqx5GGofNjUQ27hlHcfa21DLKpOljbVCfFtTjmzzNPt8zp42a/701jRwxzDTy/rWA8E/QoLfAqxM6eh2kIarXuXE9iLV+AA5sXrWw57mxDqj3ngmwejTrdEnCMDoc1RGH+wdPEjeElnSkYQ0CbuJxNNj+41Fd4KuqGVH5NFXTUHk0WPYRmZcdeHIohm310wRxJuOdxJ8Wscl3gzPp3XQ5HaQBkEaBGkQpEEw3xynfIN8HwQcEHBOV8DptY4A1LBjaohdoIZHRQ0hJg+SbTpQMGxofrZxxyoOtbNxFjVDCxtoVVO0qjG2oTna1SD1NUmzJ+0YBNSa8AzIIIA8bzghMXpxSZZDYiB+HjiSmXrXLkfSJ1UD5UjaJMwCS7IWF62fK2x1x077ICvbOuEkH81JPqBwqZ8T0YJw2UuJwrL+r2zFa4fmm53vlmi++bm2eKa3Rxi6pr7rPWtFgFQL7YE7w3B99ohiqawyOnJ3RtctBCLfPZwvwwJGuGH7hdyiGGnV3GF00FGU0XWqAsUhHnqpOddrO+VqCs0fjrn5g8VgPjc87WYNUYCsKPJe2Nv+A61VTQh7UchiSCAzNWL1GGQtVUtxAWKqEMMAMTWIhaPhV0b3fNxbBtTSth0x/znu0lNtQAx71hl2Wz2WvPYaLPlO75og2aon1DksbRwWc9YARw6OHBw5OHKtygXYO7gEDA199EcPuqHPSXmBICO/Y3YGGfktcDnIyLfNkra9duxGXnDcfl19pCmE3zgYPLtq7D/wwbPbUg8g7SZAR+LatRyZamJuNlAnoZj6oSwzUEy9C+2/J0fDMrHAnUdWD8GicdWtcKEWLJwXhiL9eJ5eygJOPxsCdo0SvZA3j9QKoZtre4SNMaBOS0ssH5oiD8HiBJzbGlGNXWDcwLhbxrEQ3AenlGKNnBGU1egE1LELkgBIAgem0m1LAi3HqXQsZ2hiW2ArRkE9PqVFIQP0WNBjO+VeJpivGeEgTqIc6aBB2koL1418MOdVrWOQG3TuBumu9qVGvIRt8UJTLW6XQlsvU+SGA6FD1rZVT+q1Jv3aoSz2qUuVMhseynE97Uoa1zR7eRjIU6VM67oWyFPkOL3Nt9UPaKs+bOEws4mw37vMLOP4uHbQpwXlr83z3C1WtaA4tohlthXMXsDaVl6gOdNvZ6apTWqtG8vVAkICcwPm1lPm1gZvs9h34FRozKCShsEq0IpVwFwhs62U2SU+nfGEoFcsYYAAdKO+1J+YDsuodQVmpkE1aOll9zmrDVr0G3fkJoQGLSBNDUuaasPHMgJuBNxoUO3C3F4xI/3cpA6YURtdF4ETASdqJaU/BFYErGhgLWihJ3pnmGEdO9ozP9mVsS1gSgW2mKXotIIxnW2If/CuACAGgRhUQywCF+SgwctBxoEMNgMY2hfdD9+/21qAwpDkClNSYc7Hpjaw3DTiAFjikbPE488DgPocremP/a7PgQ5an0PfkwqFtXTkJEhIroUNFNaCchq2iCqGulrAt60uxtqCWqejGOo/dQPoOBxQBQ2oydbZoqwurIKqH31456lF1AyxPP8J0vvuy/6DgnKsCkoQgoYCLaJaRTHPgQ5RFql/MPwOUacWnGfsNrIq1ZrHWw1MqsXDChS30GNJe8VmHtyHl9Xq6uh9wPGwfMDQb+tYZXdo2gHOhbbVQw+CAiAooH0LHgQFgM3tZPg2CoBxA+O2bhcZSF+oAMICuoE0hAUc65GEsIDuCEcFgp5aWAAKIC5gCAQf2gCCinJg2aFHbQDPLGLYxzNNjFJhhZoN/gpWKtUQggKd9LCvMYHn67WBgVaGYCQ8pJHw1AIRTFtcnFCZoF6qMSfWKNPX9bUfS6NM600OHXyUrTKPTo6w6W04QPglHH44/JqH/6yd+bdqephW311wiJ2EQ+zkopd7UFRrKD0X2gA/dsH8Dv5WyyIa+FuPheLbaVVpu01lN9Vz+1PP2GpbyraammHbXc3a6LPcaQdNm/2Vt3Zh20Zf5U5ha7Of8vYUeg7C8YTjab1RQWtSSLeI0TJ9sYwgVqXsTtTYBsuUFWdYPYmy4Rxrh2VYZD7m7Vptifk2GmtDTroJ7cIh2HSGYNNBLoKgSjPWAUGVRxRUqeZFCz0sz2iaV7F/nga8bsaHojPOlYkHUFWz9JBLA5H2g7P+7p4tpgGqbvORVAW1nAVT1UJZ2M4IO3rADl2F51wkyMwSAu1W8ru5dXEqCyYZCW8PDpwprPXjmeyB2uvdlj1IqopJQcnY40vbtvLVXhQ0fHUUxg17K21gHr1/vF+smiDyoWnAevn2/XzdNGrxYfM8n82f3zaOvJuvVq/ndz80jbtfruevV4uRLnFyCaybIRmjhIjsr1XEZD8qnTYPjGPHOk30pClilv7TUKvDMoM8zRXqoqbvhRKoKRV2pC7JSIUVHUSSQcgzFmUsy31y+oqyfqKbQuQpZhBp1AnuneTdY3x1XcDXtvBVNuAX8FUepB4CfG0LX2W9k4Cv0iD1QBxoDV1DF9C17iXSadPa6dI6adImieCeRhq3BrJIGrFsfJF6oKNJUKO5F6AIUcV0pq3Gt8qbCfVMhmpkoplUADkHcg7kHMj5AMl55AM5B3IO5BzIOZDzYyDnAZBzIOdAzntsG3QDsA22ha4ITNmArsNBV9mWbqeIrojIGQoYq1hx1KRmlnb6mVXZWaWs1Fb14zTqXjHVQyHRUTEIW6umVQ8kclex9dSBSgMLYVvapyhAiqfIdRrDyfZouNa/n8X5DzpiBDjxoXfg+DixvElExxRiT1WVTHFTIAjK1VAOKA+oZGVJWlVUNl3WsAMESlNV8IFA9YFAKSRgVR9S1QKeQgoOHjaBC7GrQeIixzlYTwbtSjY2qtYY4Z1NPGzAyxh1XpjZtGiNzaoglooTb/tTYhiEg8FpL/5ApQMsnTLtOUHHIdzYXtpz4EbHrXtFzrBFE/UaZUY1yGxUPjWtdGqnPEgpD1JDGNhqfrxJqdIellXRLRKoUVZFF9t0Cm5tjfq4qfcoNSrIZEMwNCsHtz28nCa9AkUHUVoW4WpoLhzkuYf14UxtSSJK/UCG0y2SiOeOWb/I0ME6tgmEe5KU0xqCDqLhjO9Gh284o12/3kbN+qEYi5AXd9/Gy7SmvdUeDMZtDmy2OGi/64sbH7zpjrWeBm20lLDT9sI2XrRCVhpQxY0tzy2QnQCN+lR533qnDXvYWb3z6q4bKfFJ07XTLSTao5UShwI7I+uv2V4BxPdwrAggfgQ4bnXGac9q8E9tSgw2quibf9rUhlBs+inbzhv1ai95O8TS2Fct252U+s7qqv9HlS+KXKezhNGDhPBYcmzp1Lw/UAP4XnU+xp6V0Joet9Yw6e1l2MTERu+uVmHj4WG2ktVvCdNCK1mLLmbtFtitR6fp1xJQXpmevWF/+fR2NLX28CDuZwcX20GKbQucaj2BtHsB9UFODAeRxTgs1eGQQWcHiW0xctGrd560GAqkJ1QbC9Q9lux72eEe2xBgbbUbbt25atpW2IJv1Vb74DZaBltvE9yOdbyFdsBbO8Cz3vbXeqvfttr72m/pux18n9QYx/3rkwoE/ygIfguwMqWj20FartTj5Vu0XNlMrNSlwduu0lGMzYfGG9BORo8GydkeNOMBjD7WjD7YBavPUVl9sHfwOHlLdElHFNKk7CYiT48NOBb9Cbqylh2ZR183BZlHj2Mb2XHVpSOLdtx+c0UQcLrdysAD+eao5JvhebUOmuAO4iCIgyAOgjgIBpzjlG88B+QbkG9OV77ptYoAxLDbnXQhhPG4iCHE5EG2TQfqhQ29zzbuWMWhdjbOol5oYQOt6olW9cU29Ea7+qO+Hmn2pB1zgIOONCIGed5wQmL04pIsh8RA/DxwJDPtrl2OpE+qBsqRtEmYBZZkLS5aP1nY6o6duGjpwEE+0YN8QNlSPyWiBdmylwKFZfXfDUc9oPhmx7slim9+rC0e6e0Rxq2p73rPWhEgjMCXUdzegQauHbkro+sGAmoN4I35pXV8wF77Vdx0msJnVNBRrDykUxFIp0O83oG2J+gYdotXZ4JTaP1wzK0fLIbxYe+0WzVEAbKixXthb7sPtFYxIexFEYshgUy3NN8AQNZSpRQXIKYKMQwQU4NYOBp+XXTPx71lQC1t2xHzn+MuO9UGxLBnnWG31WHJa6+9ku/0rgWSrVpCncPSxmExZw1w5ODIwZGDI9eqXIAOLwFDOx/90dDOR+2lQ2/no1rZH9r5tEn3bXwxNvlkU9GpNd+Crmhk4FswFX36Vy5hKChsqxRlOOpvGxpoXWIJfezHRkDar3Up6ZBpv4dI6ocST4cn/4Ms8WTp23VEBCjicxz8CwXAwICBmemv0HmrF2Qcj6AbQae0EPjg8fDBOISkB/HRYSc9gF5yUL0ESs8ab4gVQckau60gKNCJoBp3DfKYfFX/2tDSmPSRppBr6mBIZGpRDW6HI0KBpHYXZXVhdvloHT/tVV0Vsxak1vhsZ9B3QyiP1EqxDMtlSUzSDbYgrwK911ycdt5xGZcH1iUd+73pkm6cs2wuw7dkbmlL6OwWcyyabVrEJFtmnl7A1lawvpkM08IOwfGE49nB8TSXOlqVQrpFjJbpi2UEsSpld6LFNtilrJW7qCZRNgrTt8MyLDIf41mmtsR83fyk9mw6ZvaB4dl0MAabzhBsOsGJVz81dmioRabkMS3SL5nVQ6e0rnlQHSOmQ0wjPTP7qga8bsaHoiPOlQmLUVWy9JBLA5H2g7P+7p4tpuTQbT6SqqCWs1+q2icL2xlhRw/YoavwnIsEiVlCnN1Kfje3LU5lwSQj3+3BgTOFtX48k9sB19sHSC5ZJNs7ev94/7JarGdvHp/fLq7nq83iebaev39aLZ7XTVNEyBJ6IjfKMnewJH76YZh+bcPmW6FW4hqx+hpRU61BbSoR0XPq9AKNrtf3B8YeX31nsDu8nWkIXZHllKp2h0LAUT3ctm18tL+3OCxTcSLfOsuUZGfFOIJI8pkcG/NaQsUdl2o6zhJhWOrSnfSp1Jfu5G1mBTuYbyzeWZaFvUhWQovCWEVQUfGZjr6ShSah+GRyQv8XK+lHGIeYPczfL1SfefPycLdZPj4075okWFwCbnkgxigh6Q8vq5Uk0F1qc5F/II4dheX4rM617KeqBFkOKrfQ0yogJFS5UDAQQg5SyxYdQ8cT5OK2f15UQlThvLRjOtmzP76jbQUW5BAHzp3tc+cHOqXudANL2kAtD1tALRx0kEov9KvxgFodO7XyveOmVmo9l4ZfmFOdUppSSxvfbwMO9gTpOunNxQdrMnWYQr/G5CX2ocSrDGZ1lJc/9CphV9Au0dByZ04ctrYCJeRsb9yXP201UqBhlB/F9Ws4BodU0LFDqsFWL2ejlyb+KnZzBXt5k0uo0T4uaxeXtofL2cHl7N+n6dWS4cOn6NV6D26j3rqNXBc6TyiK26CUSEApdk9NQkfeyalheponaCVSWsnpBHtbkJtMVbhW9JT91mM95ayZeaowS/XtK1KAxjBOicXKsjsdlJQXNnSEDCPHTImY+sreJ0FlkbSVbhWAoSqGmAiF6tm3hahYX8G7qcB1T1jQDToTdA2YvPJH6uXa6URP2hHc7AlvFVvcWT8uDQ+U4UbtTHBHs1k6KpXmbh2+PKkJ3Q2xTrnvyHGGrnQPsxKtUWX3AGk17JA2xRUf9Xzchm45VZFRZdXb/a+eyqgRTa/aguIEihMoTkNWnHAIihMoTqA4qdGcADSnAe0WckB1AtXJ9oEG3Ql0J/u605nEy2pdVwXU+XimpWk1aViy0pqMVCZ/mksB9SMV5VNCbNq/bfmNyf5iI/lbs++kMKRr/YXwTWkmAPl5/fK0eC7ecpDgz8jfc5MArdFvCr/6HgXdj4vn5ZufZ3eL583yzfJuXuDfdJuS0KnR68fHVfGlmN6htYhmj6//trjbrAtDPKotrJdv389n7+ab4hqSm/eLh8flenFfvEe/dTZ7s1wtZrPCzYA++XaxSe4WH0y2IVcQgVm4yI/FoYitvwgv+uu/lSBM4fVwv3xf2hYK4Derx/IH0l15VwQKHf/N+6fH583Xz8+Pxc2k3bdG63fzp+KCMa2C87a0tF14e1T8FjpTcVUh4rvyMN+8PC9mm8W6uHJMK7Ok6LEbWhhFo+pG/1FcD6If+H+Ln5XsAXI97AeFRboZGr1ZvXyYPS/mq+V6s7wrzkC39lcvm00JSTF95eLD4m7GihsV7odJTNzopbR1Di+HtCgit0+/f1mEJ0WCX5cOAv2C/yr+TI+YWwAZhf2Sbv5q+bqIGvSt5w+Pm/M3jy8P9yXIUjx+P394ma9m60Xp1MQ+OzXLh+WmdGoQonf/Ml+9LKrwzgv2LS0hLOT27W+TfZqe/5Zs1Pl3NRuF2FT03BdvURT+fRHayfYFPvZcVNwhWpTpOib/FbE+YORjM78rnrCYbtPV+U/vlnfvzpfr89ViXSJNHt2Jh5f3Tz8XdxllRbJmb54f38/WT4vSN9Iwy9H1y2a5Wpfwymfo+FQ8MBTCD8l0mxIxYtQ9K8k1++F++ebNy7pMkhnhvV8+F5Rjtsv05vun4qLY/EWkiOiv10UAJgstbAWdtrSdjJgROrwqEWm6Cd+UHnDZ2tfz16VTGlH4PM8JlX0owYcd8ccSrNHOIhVFpWcQxR6/uHXpIxEqLpoShNXjT2UW69eitEcfqjFY8C5VZMC3xXdRNPvb47K4vSGd75tvv/nzN1/9/pv/+rrIu0Macz26e3z/NCfk+4dFEYEDRu0IZl6XkBs5dDGbn0vchUkEvy2unX53mRrQn/9aXBn9pP8s/kqX+31xs+kMfy4xp+TX4rlxcpSJnrniJ1P0/FtxmRRlSlhB3/w926/fzDelDWXCx/f/WpQiIrqOvxR/Zdi0eFg8zzclqooYe1t82DzPZ/Pnt+vSAeSsa1nE+LiOLc7WBEGLm0eX9ocSplDAbRZFoYUR8xJuUDF39Pfiz3QlvysdPDr5OZGI1uevXzbnG/J1i82M/k1obokmp0Lb7GVNjkkZa0P68q+LG0vfUoJqmFLLinJWFB70sdLOO1X0gHGCN8uH+0pCzwRCrpIUPoouuSQRspevHouSmk+HJ/v4NN+8KxH13KmuARLTRIgIsHyYUemMC+1V1jc6Kx0+f72ueCOVJvJZC2nBzAInIot6X5oaUesNkTbu5oT6l6QNevOPxT2mxL8E4V2waZGCY0qT/r1Ikyh9K60H0Z9Xr+/npTPm5yTe0nnPEfA6SNI5vivtNQXWw+Kn2ePDoiwI0PXfV1Bbl50HQjBK4ktIH1o83K9/WpY3LUFWdO0Uf2WMq7QJyeoKY9mKf1WS+FOeUdIUK/kubfFCeXURUFSo3jy/LIpoxfbyN6lQwwlwCaBox2jL4KSLvFsRUBeXTz/q/5QwnGHK4+zt87yEdk7MxLEnQrzezUsUy2fo9Di/Ly2SUZ8ZUYo3a0LXn0oMDwna0+Lhx+Xz48P7xcNm9vg8+/tLidIzxP1TEY70JUVyREWaN/PVugheIfu9gP3s0C1+XN6VhUW60NWiuId0sj9QCbgIFpqWOiJf/fC2rFBTnJ7f70hHETBMxVgTEXgzfygth1WG/e//Lq2S/p6Qmdfzux+KDIKtp/gr57qEYRaxiDKB0b8Wv5juQSWVDOsVn/PL7wkvHpfwlIL1hxI3xju0qLG10Fd9KNEn+v0vD4sNM11tz6YXFxdnZ0wiOv/b+vEh/TdXLnZ/pjLTWaLHnN89rlYLStzW1/PXd/z2+TcbIroQcfzs9ctytSFTTGaz9J+z2dnyDdVIs227TG9e3S/vNuOb3WPpP65ns+QOefZuNV+vz3/3+Ph2tfjV6vHuh9XP3708bJbvFzdnn/CbiZDpkz8/+SX94f1i8+7xnvx5v3hzTsUPx7u8W62vWAXjgF6j8Q0zAE74r9dPj0+XF+y3i/ErZpjBEyJvzDeb58uqFVyx0XSw7/gT/sx1+s78+149LwjveDhng2tX6zthuljCq+kqs0kmyVZdJyRlfckHpNOSZ2penLyKwJ1gWwkyOEaXlH4gdMWMVFfM8BDRq4+CcQLXT5ZsOPl9MmHj2JUMuKEvDeiDrhtTmGBn8nGbm4lck3kWKz4TeWHNg2z667vHp58vx7k5HI9NsV7IvZON50NvL2Yz+mI/ns0uphP2iLAn5fkE/ELhJcMyCo4EeqmN5HK9WL25omTkimdPXrH+DOMbamm9HF/vxo5fJaOv6egJ/f/uh+TBCb/ufiSzTNgl27OArCV95779yt50zZ/a98AnRE84p8ZaTEjAubgqdv8TdrNhLjZ0+YYDOw4iAuwlg6/j3TBo5wd52M+NeU3E2x8K8zhuzTQUGfasn0Cux8tXJlcJ1lTQoWuGm8Xjf3tBH7mYpgQoRbNbyUkIwPijeeiK8ycTXkynrzi22pyazJfMnNG3y8pjJhxTHDmN5zR0XXZ0+AocQsBvdvjiuhN22Z3BZOCEX7PT6nDGQa6KR5O/RXijBFIK55muZ/I5I59+7PD17qhrfhxCeDfwefH0fMlGj2uH+7vh603T6DjcDZ6v75bL/HByMp/ny/XiPDMYX74Z/ccDoYqJ0LC4vzn/KM63HRU/NYHuTQpt8ccGiKUoQ1Dr/Xxzyde42+3kLZUjxjpnkqKM4qEkz+RPJUUnxUmSh3azMLZauJfswfm3RNcpnCF+BHajE+jzmRh8Mr4Xhc0nisxzRW2h+1keGcZlrd1P5JEJuygcIuoKcibCHJLoICzkkk2iteHJd+yTCumi4uAqTyXJdtCtpp+suNPkmQxd8lspwF7cNgfHMoRw735ltFBhc1J5quYLkevjS3nSd5gDWTosOdBiP2gErefQBaHAjVJutRfUZPyEXTK2Q56d8GulkKjOdjwvYzvJtBJ8hzNnAgPOnMkcTKASln5NrbPoUmSuNbJVJ1Lm/WLF/3mbG5GKEvsFuNLTbMD0VauSHcUARaQlz+S4CEMZxUmSh7qREPPHquqIiMcsIRSJiWR880R+yqlivtd4AJHvh5QuumiSMMC9py8ZPOHXjDWRJ9lFZzvZlKpbQR7KbQVdgyqvcFGdUEBv1ckEAsTEfQjDZmrnRiiToMkfE3ZRVll3Zyogh4oajHYHK3+c2Yjp5HaaKvile9eLD5vFw/2lsCx1ZlJitRyhIwLHnNoRyMpInq8sI5FHJuyibgNIgCjMU5bHL/7wsk5s1z8uzueb89ViTv4iuHH+YzLk+mKcwheH0USY6NaZKjMP8XF0M2X0XhT2UWJTqpenrpljLL5JSfA5X9iNYMMhf+74CF00v57vliLDWnKqjty6sJ+tK4G6ytrmD/dKi1NRrMjquV5VWknHgm+Cx7JsJVVQdmwlE0Ay7udXWAeEYyaczyBwGw9o5Dh7Tya5P2EXZWn4I4uqadJa+acmI8XzQt641dmtZMGy8E7emQd4uooc/3CcMsQTuAmgjvxmUKPIDdk1ZlbnONxPFZMHJvwq/BijCb9mP5KpJvyqLiC7iOiVlDeyePN4Iq5AjuIJWIg8ojoQGP5j+XQprvpKXC03v9L4qgl/qEmfTZea6bLJYqkRGo9TurpaPOTeOv4SUUrDqVMygUCdkj/ThdAvp5Pl6QYfoy4M0e1TFYbIQ3npNtnvW3n6k2Iy+WcRkZOpuM2SIoz0MYmcgrib/FKanUxZPieVSC+KtQHCzScHsc/j9DEKBNNlcm/Cr6/22DPJQxN2UT8glG193L6q8dw0QDFxNv05cevvOUF8QZjCImKvqBhLX0mw1Bnv5Aj+yyTB+xQ2lCBNRAhJHK3Q9xWss684WG7pu6hfiUyQcWqB5TNnDlnYLVvrlN3boZKXolIyVMppQz9ccKsKz1L9qmZDsMv8isJYQYdPFrJXiRd8cA79lsI8Sa7EdMJn4k/I7+lnKJU6cWYqSp8qIZ3oVdWVa9jJUaVP5KEcfbJhB07O5q30JE6cJ0bJLyWeHXgVtKhMRnIKtutKGg9NLIU0MshROGmCTE7FwTVlZQm7Ps+U2qIymPp6yate6VtnTPe2oIjTW9Xrb7A95tzQjIs4E+cQFl5hDlO9mtLOPHBy6rWHm73vrkcFN0oVgrDZ5uMyPTtTs5On2EVDbhS8U548Frse2/ivP9wtnpKYmktKBJKVCKuSn48MzjApi9ogP3N9kb2TBvLsPlXUJ+l9Lc1Qw3tV77vKea7SrVGcnjxTNz+9VXfiXI+jUJ4iBv5h3CnKzuI8AQwcPyWAiQh4OAK4n67FEi4VFDDx2QuYhyEI9uvriJ1ncsl+Is9O+FUYF7CYI3LVEIiFs4oazypV3LDP7ZYp1w59Ud1PFrdTCVMzERkjYxqqEAbD6GqfL46dXuyn5lL+jGBp4vfnT0/F+/TVoUf0AeFrUIzi3OcQsGafk8kdEz72Ve5kSH4knyoRAZIjnFne8l+fiDcsvpAv9frl6X6+WYhhCnX2tIuvPyRhkIv78/l5MsdFHiTJbLd8GVMhAoMvjmDFhOLmjaiNM1COJxMnUcTJCaUHIOdAKkObneV05HRcOSHiE9JchEBqxt3QadE6GISXn7Knrj79lH+rliMWadBtFBS0/uTMSovEoV+QiNnZyr2ATJjq/snRv73kmHjrTK9k7QDJcJQuc1xA/fznBBU2sypalhPzHF/CoUB9ynsdwyjEgWB1oyGJwgMiUkQ0kKqK/GGPK9kFPTXnvOW/C+eXPHaVu2jGWig4I1PFVTTPeJLuyJL/0cGu1B5csfxdHozGzZsNPp6KSE8yBfMHuBXBn6IhlNtBFVnV5vnnQYd5Ugk5E5TP5yzq28t9FHKdMMd7sJt3FpH7jPEFcSbr1cld6WgOhvrBQmBAhSw98BDVT94sH+ar1V7sIeh4TEG2bYbIJsdcmpwRBCyQM47gOQ6D3XbDbznZsTkzma+aAlcTUzHPw5Ohyh6HG2LWrbDJ5R5yT0qmKmRRDILdPGTm21A/Fj+ZY5LJw/TV4jrSQ8a2P6IT+mE4Fkl1hPhhS2g6zRXzJ1lmM/sXr2HBJavws4vri8/SKZ/mdz/M3y4msxn/12yWSsKUvKZzpp6Whrkr57viLxtn1m9mKSYfc86IcfIvqoTzoUyKjv2zCv97KBr78tAjX/apAN3PAJoV0FzvB1pbcBoOjNR5BKEPt5nxMohcRtjItISyXZVukHcnRk1OEsmvJR4Rocpohl0UxU4tQld5+35YiEXyZDMgvDiWNFhlsUgxdQyTS0dJD4JCL6zhavPytFqwjBjCUOlfl9QB58RyQRaRk7NSkDmnYzG5LJlWuCmx2EyBJh93y6aYZlBKfGulDJS9kQhhC9BK9q8FaCXTqkGLf+Itn22i6UgQUMvEOnlWZT3KAo3iJIWKxaJy1JAVhqKiiy4qe+jo9NMi8inHAsdx7nMqEz7IxLnYTolsKeTHzFaBWYBJ6DSE6pDxE34VlFsWUJJcM/LiMPXWUcz9oG8QXyfvIElGF3yFWAzyIX8oTEZG5ydLvkj4OgV3poPLLsD1asmNuBVboBeTHOvEJMe1jhR2rwxP5XeQh2rfQe+VwKx82h1c64xNbtVHRVfBPnNc7NdGqk6Kuqf169Vq+bRerk3crPlII+kEFo8ZVDn5iD3VJBby/IRd9kkVMfXFxjrxSB4LZkoSxon0eHkxm80fiKJASyMk9vKrj9vUjOzdFlJWWJiKsFR511r+JVPuVPIK2h75Rg0Hnk5izUHSTejmqs4R+laDZqoCK+rOciVO7x6NvbwcjWLZlH+nOdqglO1PXY46/kbfy3hMEMuJhWk8Onn2hr57twp5FuVQBnXx1XqdVHp9fDh/M1+uFvcXr5i1c/c7854lD4wPk+DuKE/g1GGTU49LfOcLiYHOsIpE/PSObGEv60T0IIMPSktAaYmcqOcg6cQGHv/vOq6jntdQkQKWTDThV0VlKXmDQhLDq/Rt4qv10ut3wEigcLi0AbOkJQZ55cIMrlMX+VSFIqJ/wwmb0SwKYzF8wI3o6mPENBXXpR73mBW88LkvJBctQCaYsMv+2CgyM/OCZBI9ecuEXbJHXYadyTUbxwqTkMvuJ5/5WXzRzWKUz+4G/oSFnwcSyjYfWB03fJ562HCeyJP18zQRr/V3EcBMhRQIF4UuDcSh+5xF4mTRVPYzMCipxWgi5g4RLCkGHSUrGn/BxlalImaxU2lO6Uc2eHt1/pbA46M4D09PTL8ojdFKgq4uxcwpAetvb9h00/E4CxJK7/FlTavW/KVzky8HxkOgdg87091agjwY6POvWI1RXpgBfS4OiFn9mMyTgl1mqg/9xJOyeHh5n9T3XeRnzAUoZOFKyU7vlsrusEUmUWxJoTo+cRrCluKci74Qv7dyCg6kZPC0/PyXE/6NVc+SE5c++jkfNt0XRfdm9Ifler18eEsRgMwibnZh0wg8s00TyM1uHcJvuw85yy0/CZ2szIxdpAj5kQ9L1yG7V4QEWtwq4cTvdkL0cFbNRghQadeUQC6aLgmlLoE1+XG38Dxcky+UgCsZlr6sJBI4uWojnHJVuQVQHAdZgKzU5iQU6oY/msa08TKW13+aP8+JzLF4TuMDSzeu//TH77/58zd//Par38/++O3v/zoen+kdYvEMlSjH52m8ZuDznCPO+YQTdbn3qTFnRMbf+N3s37/+63/+8bvfXBFOM39ZbSZ8PeNCjKvFV42Lpb12B3vfO4TBFS/6y1ffzbKXqW1bdp75ronHq3QUteDAv5ziVA7S4qvsgFx8VQnS2WGXATUVH6thndtKLqAQrSZrAzObpA9+n/52yV8spuklz2kltDOpNXN9h0T/FNl/Icb3lSDBZm72gN3gcmxm/kMhn4xLs9lkbiLNv+IyrXTwFt5poYI8WCsD5pYSO1zrTSTmW4WY5PwLk3Dk8gsrgpT9JLhgulPhldUdqqZXqzu6qooY0OAetHjDOfOXm5ZwGFeHAng+boody3ulkwfSasvjNJ2/PORyvXm+ev3zZrEeM3u/jyeJB/tyVxyjVCMgWeQ/pdnTtE5NBcv/NfV87AT4ZNiWotbH4lRcEkgJMi8wEZYrIpDBu8o4ApTb8XscpigGwlFUxGFZA07JBDpJFDhrvkA/8lWr2WHCVG9UK9dh5gkkl0HWrSNnZb5aXdKi/nI0wI9ECkBhVpWmJCxnf7r+z8vF6l4gRjzznp8W6susoT78SzkRSqUNNh+fqcozOuwqdgm+yR50P8ofc7Z1uZTRxG3ZUMEOUx1vd7J8CS/7zgfpe6qReMkzE35tNZ+Uf/POhMpWLS5jrB7lRpsoRGpe8d37yZO596d8pVfprVflxPZkrcXM9tAz5gvcuWWXLTg+loizj5oi6yMuZEehXrxoVTLzq5J7j98Q6D45mnnvZBTeqNJ8kwSSSF5u51Qkoz587XnMicKq6OAol6UeBc2ug6SJslQdQocnRTiCtV67EmFWOSgnEu6SgYsiIV2l8Na8ql7O/GW9KR2FJOKKVGkygZAtTJYrZAsnN43ShXmBIIkKRFP5r7BQ0c9R0TD5hmUaZrITZQ2T7k8BgZ2ditlNGUABzXPVzAPcdTVTL/YbqpmyEdXVTPm9TquZInJHK5Clh61NGuzQNQeLnfFCnRtPIsLjUFEXZiabdDdUBSCvtir93kgKFPnBQYWLPUJCdRmNfcoZkdwFgaSsQ3E3ivyERHHYCcjZdBIiMlmGKCJnz6ZCuvJSUISdirWQ17kdrgJ7XKrCoRpAhKKI/KHm5JRUukyzU2iBj2Ju959/fqopu5v0aeTfk2Bt0sp3NmOmsKGIkciJJeqrc9tYoQIlj8YmVzvlJodQY5IZUkQYSFdxhtqQ9D8GwV1ZMqUykZkMLFUtUq88ZOBplIcMvMOUdswOpmhokKivhf2GglqYdTgk1z0dBYPYv+Sj2M7hQKazIBmeCchpLkcmAV/dTsdiLfViO8Hax1k7APp4FngSp0kj9CcWBl2YhYypmUacgVwLfQXF6Ac+QuyfiIOGZSS0K1+0JL+om/LcgrLBFiEoG8kTGTUQpksbbabzpX/zwYzPfUvYV8bnyA4vHxIud/GRT7S9GAn51vuBIsrUu69WimQNA8ELQLBMRMyrvVFtwmvJLLfig1Mt42XDYn5Lu+vuE0tKy9DNgN1bSjOZuWBxjENZDXiP6K2rFEvWGNil69/k0vin+woOZLn/Rc4apC1FmXefdxglw6/XT6slOeG8zUXGbP2IVlmhDYov03A68uB4x1mFQgrXf3tc7kbc3vDnP0NT7sxwUFOdhHE9uw5yJqnA4bvL49/I3CLPFUzk9EmhFEoydJytfQcUNkNfqx9EuU40UUxpZx3fcUPmYkUs8occSnr1fWdCj6PIbciPN3zsZxM+OBegQpv+fJL/5TM+cB/vC32dNXwuvYbPm9dA0FBnDZ9Kr+HT5jXEvPuc4hp+Ib2GXzSvIXT01qCwCIlVYKS1in+WXsQ/N6/BQVpY+akCSkjghBvoLOKLL6QX8cUXjYsgUrQWKL78UnoVX37ZuIqAO/0UF/G/0mv4XwlKhR2dNfyP9Br+R+KEYi2K/S/Sa/iXxjVEekfjl9JL+GUzTjq8OZGwhvFNAbUbZ/HLdKY4STNiRl7QNMlkIkH9I6dpmn+SmMZzoka4NE/TCNsvm+fw/MYPShySEltdJj9VE6X52vsnc6PmuR6a54mCxk0/FxTKhj0LG9GQd2Jrmgg3Q4q3TWviO26YzpTO8Fl2XOuAkpHo9KHPGx8iIgcuPpV1W9r3pBuXHvx/u4eEKvRec6we5q2nuIrV2HkWs2xTLGSbJs+mOlJDph6tpJq1YJD12+GkJRP34HM48egVZvVNanpxQ7rLtDpedS5ZrTCJZOzScr1+eU3BeMmn55AaC7Vld7aOdEWUAVQruPJfmsDwphBkt6s9x+rDNiXUy2eXyySX1+WWVwyxl1uOHKzuXsSotkMEvVXb/6WjBrbJR+W7qFP1tyqEPURRXzwqrJHnhnUaGUoPLxqNM7/P4h8kvCzgZhlWC67h+1h8qfi7yE9L/oshEgGrCuBHsRB7RMZO+LWyXcn+AJuA1ZYIhNISZPoJu+h0OnFCmgHvOq5kGkwyMsfTyIewNCMnjoU+mz7O9xDxYlTdQoRRCHL71plOJhcEv+YU+hc36aT8NppK+2D5Cm53E0+VJuGcibw7H5OYeluccLe2VKRJfiTvEbuZ5J4Xx6fAT0UypWBYMve7+Tq1CSdzXpExT8+Lp3mSrXfBTx6e8LvXws2dnT7LOCDLHrM6BAnAcgVAk0nYFrI/krUwIzeNbEsDIV5ld//+Ml+xH3n2fSJsZrcF55HgI9sjKpWlJIRzG+Z443qYPCx+2sEjDH0BIPTObmgNUPjramCTTLjb+9qnx7kDQDMQnhc/Lp7Xi4ztkbOcWyMZ14Cil3z0+CxXFHkngib3BLDv2szs7hlEQSfkS5oaO24h1yolHvkw0sjvvndLy6WNEjotHYLrhIVcleSX4uSBmwbbcoKfZXpG8UU5VraRJYmiLD5oNuataR7mdEBZgxF2pMI2pHKIxPCNhiwiGt/X5I/HXr2y4Gn46LMoQzJz3jcuyJdYqU5QIc1ob9xiOc+pmGdknue0dwEtZjjJBAnIJSy5MsVjITgQggP7FByYJr5LKbMnGyKIUCRhpfIQynU+87HbXP42eWrCrw1t0HzeB41c1UlCFOHJLS+Tw4y8QcwwEiPWHnj3v6qmaMXOdslyxQyz0J0Ife6Q74eyqWaCypFMk6gci4fN4pkqHWJcDmv3iVhlFT7kcpyP4OPvj1x0k/9TPIo4jBqOYs2yPiR7x1QhAk6xRSBfFB0gJsPlR1JkOMpWc9VoJTgqMteA6xFIbZ7nd4vX87sfZrO6RmqB7+UUPQbKfKUxMiYfwkl+uKxcy/hGFvN3VY+wm7WrI09o0b7kcNtt0ZhM2bbmVaCJBbqWDGfxv5wYXYzzZTMcR7ZsBq/02dQeuqKQRkUlWN0m0h7OyoZzZtuQOYNjrNh2WnwHrwHrMRcJZriYhFUk4lddjXs+uk817s2qx1ouK1BGqFxXB4nOTyzt2ySdm63ogoe93q53JSGa3DH5DF5hDVO9ze0ijbiYPuxFQVvFea9S816va/RWOBegbG++bC/yYw/K9kLZXijbC2V7B1e2V0Nlq8yxrNO0yGAxByyhGwmoxZHjM/On+aBU29FyoL7itHyXxZ3zUkKRYihSDEWKB1CkmB9huSLFKi54n2W7SrrgyehaFzy5Z+BmP3hV5DZ948dfcVnF+++mEadCkATGNd5/K3WYU61UDAAIfJ2ShU/kcXtFa91IpramZE1Nha9Q6sjcgyqU4zP61oo5Z6vHObU3c4xI3PnMj3O282U6YkhaMiAJ8aLf6zTqrL4T8tl530xHbCNFgwfoZefTPqtf5Vt6Z/aa3UpktLfP86d3RCldPb6eJ8gxfnWeyHE1A1+d/X+xFyaNpi0FAA=='

with gzip.GzipFile(fileobj=BytesIO(base64.b64decode(google_blockly_context)), mode='rb') as gzip_file:
    google_blockly_context = gzip_file.read().decode('utf-8')
    
print(google_blockly_context) #do whatever you want here, like save it to a file or something

But you'll see the first major chunk of stuff is the graph itself(~5000 lines of it), the second chunk are things like variable names and references(~100 lines worth), then you'll see all the classes for the various nodes(~1000 lines worth) and then at the end you'll see:

def GoogleBlocklyRuntime_load(GB_362,GB_430=None):
        if GB_430 is None:GB_430={}
        GB_1000=GoogleBlocklyRuntime.GB_255.GB_507(GB_362);GB_1000.GB_617(GB_430=GB_430);return

GoogleBlocklyRuntime_load(google_blockly_GB_graph, globals()); del google_blockly_GB_graph;

And within the forge code, after loading and unzipping the blockly chunk, you'll see:

exec(google_blockly_context, globals())
del google_blockly_context

Where it loads and executes the blockly code and deletes the no longer needed zipped context.

My big gripe is that all this that he isn't reinventing the wheel of anything and to me, when I see someone do something like this, it just looks like what someone trying to obfuscate borrowed code, when this could easily just be written in standard python. I don't think he'd be the type to "prep" things for some malicious payload down the line by getting people used to something like this ahead of time. I'll try taking a look at it to see, but I haven't messed with blockly in a while, so I'll have to reinstall stuff for it.

EDIT: I also see the:

Starting from v2.0.1, Forge will begin incorporating Google Blockly as a prototyping tool for certain developments. This approach is aimed at enhancing the speed and flexibility of experimental feature creation.

  • Experimental Prototype: Forge may store experimental Visual Programming Graphs (VPGs) directly in Google Blockly specifications within the google_blockly folder.
  • Mature Code: Once code has matured and proven its stability, it may be rewritten in Python and moved to its appropriate directory, if necessary.

Which I do kind of understand being a thing, since node based coding is great for the velocity of a project, but keep that stuff in your own private repos while you work on it, port the matured code to python and let people test it that way. Keeping things in this blockly format is going to turn a lot of users away.

@BNP1111
Copy link

BNP1111 commented Sep 8, 2024

Dude, when an old friend presents you with his new toy to play with, can't we allow a testing period first? If you're particularly worried about your millions of dollars going missing, you can choose not to use it or just walk away, can't we allow for a little more trust?

Most people probably forget that this is a purely private project and is in an experimental phase, and that it is not intended as a service to users but as a scientific experiment. It's as if you were on a roller coaster without any protection and you knew it in advance.

@zdaar
Copy link

zdaar commented Sep 8, 2024

This is the unzip
https://gist.github.com/zdaar/9fd0af678eb8d55fe8e4a1fa14894fdd

I am not saying it is malware, just saying it looks shady. Dynamic imports, everything is super obfuscated, is this the google's blocky lib spitting out this ? Sure is developer unfriendly

@RandomGitUser321
Copy link
Author

RandomGitUser321 commented Sep 8, 2024

Personally, I'm not worried about him doing something malicious. You have to think of the diffusion/AI ecosphere though and how a ton of people in it are ultra paranoid individuals(or at least the vast majority of people I've seen in various subreddits and disords). If any of these program creators really wanted to see hard numbers, just push some fake PR with some wording about "sends anonymous telemetry" or something and watch the discord channels and subreddits freak out.

This is the unzip

He did just change it to a .pyz(zipped py) file though, which if you want to look at the code, just open it with 7zip, extract the file out (it will have the same name) and open that unzipped file. It will show the same code I was talking about earlier. Which is better than leaving it as a random block of base64.

A lot of those random names are just nodeIDs. Comfy workflows look very similar and blockly just links the classes to the nodes and stuff. It's likely not him intentionally naming them weird, just blockly doing default things. You'd see similar chaos looking at a UE4 or UE5 blueprint's code of some big node graph.

@lllyasviel
Copy link
Owner

Hi,

The flux realistic sampler is a new family of “semi”-ancestral samplers, ie, only a certain range of steps are ancestral. This is based on some observations that partial ancestral ODEs can benefit Flux’s partial range of steps, like details, while avoiding uncertainty and distortion on higher range, like global structure.

and also worked hard on some math stuff to figure out the correct and optimal ancestral formulation for special flow models (eg, Flux) with special time step shift like math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma). The current k-diffusion’s ancestral formulation does not work well for these.

This sampler currently has two versions: a normal one and a slow one (the slow one uses 2nd order double denoising so it is about 2x slow). Also it seems the slow one is a bit unstable and I am going to check when I have free time next week

Forge official codes are regulated by GitHub ToS and EULA, and we endorse the integrity of files. Please do not replace files from untrusted providers to avoid malicious concerns. Also the current exec in codes only receive completely static file, ie, it does not receive user/dynamic inputs, and the current usage is in line with pep-0338

Google Blockly is a messy prototyping tool. Codes will be rewritten when necessary. Since there is also a plan to rewrite some important samplers into torch cpp extensions to completely avoid cuda clock problems, the rewritten code may in either python or cpp. Also the prototype GoogleBlockly runtime supports more than just python. I also have a Matlab runtime that can use methods like

https://hub.hku.hk/bitstream/10722/215521/1/Content.pdf

https://github.com/sai-bi/L1Flattening

https://www.cse.cuhk.edu.hk/~leojia/projects/texturesep/

to achieve certain applications, and can be called from python seamlessly (by calling dll/so libs). And these methods are nearly impossible to implement in plain python since scipy’s sparse optimization is not as efficient as Matlab as far as I know. Those things are important in some illumination manipulation and intrinsic imaging stuffs.

@FurkanGozukara
Copy link

@lllyasviel thank so much for explanation

i just tested ipndm on SwarmUI for FLUX and it seems like improving quality and realism of images

Have you tested it, seen it?

@lllyasviel
Copy link
Owner

lllyasviel commented Sep 8, 2024

Forge's ipndm is not maintained by me

But I took a look just now maybe it can be good to add flux’s shift to that _v version and potentially reconsider some parts with flow formulations

@RandomGitUser321
Copy link
Author

@lllyasviel Thanks for the transparency and explanation. Like I said multiple times, I didn't think you were up to anything shady or anything. I was just kind of speaking about the topic in general and in general, people don't like code that isn't easily readable(at one point during UE4's lifespan, you could compile blueprints to native c++ and people absolutely hated how unreadable it was. Very similar to how blockly spits out code). But yeah, I completely understand some of the slow computational limitations of a lot of python libraries in general.

I'd definitely try to make a more formal public statement in the readme.md to help put some worried minds at ease though. Anyways, thanks again and I'll just go ahead and mark this as closed.

@yoinked-h
Copy link

@lllyasviel
hi, would like to get some more clarity on the code/blockly, as it seems obfuscated without the right tools to open. would be neat to see this code in python / be able to be edited clearly by the end user; if not then can you provide tools to de-obfuscate the code? thanks

@Pavel61981
Copy link

this is what whining leads to ahah

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants