forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoe.py
326 lines (283 loc) · 13.3 KB
/
moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from enum import IntEnum
from typing import List
import numpy as np
import tensorrt as trt
from tensorrt_llm._utils import str_dtype_to_trt
from .._common import default_trtnet
from ..functional import _create_tensor, allreduce, cast, split
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from ..quantization import QuantMode
from .linear import RowLinear
activation_str_to_int_map = {
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
"gelu": 0,
"gelu_new": 0,
"relu": 1,
"silu": 2,
"swiglu": 3,
"geglu": 4,
"identity": 5,
}
@dataclass
class MoeConfig:
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.h
class ParallelismMode(IntEnum):
NONE = 0
EXPERT_PARALLEL = 1
TENSOR_PARALLEL = 2
class ExpertScaleNormalizationMode(IntEnum):
NONE = 0
RENORMALIZE = 1
num_experts: int = 0
top_k: int = 0
tp_mode: ParallelismMode = ParallelismMode.TENSOR_PARALLEL
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
def validate(self) -> "MoeConfig":
if (self.num_experts == 0) != (self.top_k == 0):
raise ValueError(
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
)
return self
def has_moe(self) -> bool:
return self.num_experts > 1
def is_gated_activation(activation_str):
return activation_str in ("swiglu", "geglu")
def _moe_plugin(moe_config,
hidden_states,
routing,
finished,
expert_weight_1,
expert_weight_2,
expert_bias_1,
expert_bias_2,
expert_scale_1,
expert_scale_2,
hidden_size,
ffn_hidden_size,
act_fn,
dtype,
weight_dtype,
quant_mode=QuantMode(0),
tp_size=1,
tp_rank=0):
if isinstance(dtype, str):
dtype = str_dtype_to_trt(dtype)
if isinstance(weight_dtype, str):
weight_dtype = str_dtype_to_trt(weight_dtype)
# Create the plugin with our required state
num_experts = moe_config.num_experts
# We pass the full number of experts (not divided by tp_size) even for EP mode
p_num_experts = trt.PluginField("number_of_experts",
np.array(num_experts, dtype=np.int32),
trt.PluginFieldType.INT32)
p_top_k = trt.PluginField("top_k", np.array(moe_config.top_k,
dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_hidden_size = trt.PluginField(
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_inter_size = trt.PluginField(
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_activation_type = trt.PluginField(
"activation_type",
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
trt.PluginFieldType.INT32)
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
dtype=np.int32),
trt.PluginFieldType.INT32)
p_weight_type_id = trt.PluginField(
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_quant_mode = trt.PluginField("quant_mode",
np.array([int(quant_mode)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_finished = trt.PluginField(
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_bias = trt.PluginField(
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_parallelism_mode = trt.PluginField(
"parallelism_mode", np.array(moe_config.tp_mode, dtype=np.int32),
trt.PluginFieldType.INT32)
p_normalization_mode = trt.PluginField(
"normalization_mode",
np.array(moe_config.normalization_mode, dtype=np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection([
p_num_experts, p_top_k, p_expert_hidden_size, p_expert_inter_size,
p_activation_type, p_type_id, p_weight_type_id, p_quant_mode,
p_use_finished, p_use_bias, p_tp_size, p_tp_rank, p_parallelism_mode,
p_normalization_mode
])
# Create the plugin with our constant inputs to the constructor
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plugin_creator is not None
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
# Instantiate the plugin with our specific inputs
plugin_inputs = [
hidden_states, routing, expert_weight_1.value, expert_weight_2.value
]
if expert_bias_1:
assert expert_bias_2
plugin_inputs += [expert_bias_1.value, expert_bias_2.value]
if finished is not None:
plugin_inputs += [finished]
# Add conditional inputs
if expert_scale_1 is not None:
assert expert_scale_2
plugin_inputs += [expert_scale_1.value, expert_scale_2.value]
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
for ii in range(layer.num_inputs):
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
layer.get_input(ii).set_dynamic_range(-127, 127)
output = _create_tensor(layer.get_output(0), layer)
return output
class MixtureOfExperts(Module):
def __init__(self,
moe_config: MoeConfig,
hidden_size: int,
ffn_hidden_size: int,
hidden_act: str,
bias: bool = True,
dtype=None,
tp_group: List[int] = None,
tp_size: int = 1,
tp_rank: int = 0,
quant_mode=QuantMode(0),
max_lora_rank=None):
super().__init__()
self.moe_config = moe_config
self.num_experts = moe_config.num_experts
self.top_k = moe_config.top_k
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.dtype = dtype
self.weight_dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.tp_rank = tp_rank
self.quant_mode = quant_mode
self.experts_per_node = self.num_experts
if moe_config.tp_mode == MoeConfig.ParallelismMode.EXPERT_PARALLEL:
if self.num_experts % self.tp_size != 0:
raise ValueError(
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.tp_size}"
)
self.experts_per_node = self.experts_per_node // tp_size
elif moe_config.tp_mode == MoeConfig.ParallelismMode.TENSOR_PARALLEL:
if self.ffn_hidden_size % self.tp_size != 0:
raise ValueError(
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.tp_size}"
)
self.ffn_hidden_size = self.ffn_hidden_size // tp_size
if quant_mode.is_weight_only():
self.weight_dtype = trt.int8
# TODO: benchmark the router and check best TP configuration
# Since output dimension is usually low (in the order of 10s), we split on input dim for the moment
# Maybe no TP at all is even more efficient
self.router = RowLinear(
hidden_size,
self.num_experts,
bias=False,
dtype=trt.
float32, # Routing is sensitive since it conditions what experts are used
tp_group=tp_group,
tp_size=tp_size,
strict_dtype=True,
)
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
# The left matrix is a linear projection (no activation applied)
# The right matrix is the gating value (activation applied)
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
expert_1_out_size = self.ffn_hidden_size * 2 if is_gated_activation(
hidden_act) else self.ffn_hidden_size
expert_1_shape = (self.experts_per_node, expert_1_out_size, hidden_size)
expert_2_shape = (self.experts_per_node, hidden_size,
self.ffn_hidden_size)
if quant_mode.is_weight_only():
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
# We use a different shape here because the quantized weights have their own layout
expert_1_shape = (self.experts_per_node, hidden_size,
expert_1_out_size // bytes_per_col_scale)
expert_2_shape = (self.experts_per_node, self.ffn_hidden_size,
hidden_size // bytes_per_col_scale)
self.experts_scale_1 = Parameter(shape=(self.experts_per_node,
expert_1_out_size),
dtype=dtype)
self.experts_scale_2 = Parameter(shape=(self.experts_per_node,
hidden_size),
dtype=dtype)
else:
self.register_parameter('experts_scale_1', None)
self.register_parameter('experts_scale_2', None)
self.experts_weight_1 = Parameter(shape=expert_1_shape,
dtype=self.weight_dtype)
self.experts_weight_2 = Parameter(shape=expert_2_shape,
dtype=self.weight_dtype)
# Note: the bias uses dtype NOT weight_dtype, i.e. it is not quantized
if bias:
self.experts_bias_1 = Parameter(shape=(self.experts_per_node,
expert_1_out_size),
dtype=dtype)
self.experts_bias_2 = Parameter(shape=(self.experts_per_node,
hidden_size),
dtype=dtype)
else:
self.register_parameter('experts_bias_1', None)
self.register_parameter('experts_bias_2', None)
def forward(self, hidden_states, finished=None, lora_layer_params=None):
assert lora_layer_params is None, "LoRA + MoE is not supported for the moment"
routing_input = cast(hidden_states, trt.float32)
if self.tp_size > 1:
routing_input = split(routing_input,
self.router.in_features,
dim=-1)[self.tp_rank]
routing = self.router(routing_input)
output = _moe_plugin(self.moe_config,
hidden_states,
routing,
expert_weight_1=self.experts_weight_1,
expert_weight_2=self.experts_weight_2,
expert_bias_1=self.experts_bias_1,
expert_bias_2=self.experts_bias_2,
expert_scale_1=self.experts_scale_1,
expert_scale_2=self.experts_scale_2,
finished=finished,
hidden_size=self.hidden_size,
ffn_hidden_size=self.ffn_hidden_size,
act_fn=self.hidden_act,
dtype=self.dtype,
weight_dtype=self.weight_dtype,
quant_mode=self.quant_mode,
tp_size=self.tp_size,
tp_rank=self.tp_rank)
if self.tp_size > 1 and self.tp_group is not None and self.moe_config.tp_mode != MoeConfig.ParallelismMode.NONE:
output = allreduce(output, self.tp_group)
return output
MOE = MixtureOfExperts