This repository has been archived by the owner on Apr 23, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
SelectionDAGBuilder.cpp
10431 lines (9203 loc) · 405 KB
/
SelectionDAGBuilder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating from LLVM IR into SelectionDAG IR.
//
//===----------------------------------------------------------------------===//
#include "SelectionDAGBuilder.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <numeric>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "isel"
/// LimitFloatPrecision - Generate low-precision inline sequences for
/// some float libcalls (6, 8 or 12 bits).
static unsigned LimitFloatPrecision;
static cl::opt<unsigned, true>
LimitFPPrecision("limit-float-precision",
cl::desc("Generate low-precision inline sequences "
"for some float libcalls"),
cl::location(LimitFloatPrecision), cl::Hidden,
cl::init(0));
static cl::opt<unsigned> SwitchPeelThreshold(
"switch-peel-threshold", cl::Hidden, cl::init(66),
cl::desc("Set the case probability threshold for peeling the case from a "
"switch statement. A value greater than 100 will void this "
"optimization"));
// Limit the width of DAG chains. This is important in general to prevent
// DAG-based analysis from blowing up. For example, alias analysis and
// load clustering may not complete in reasonable time. It is difficult to
// recognize and avoid this situation within each individual analysis, and
// future analyses are likely to have the same behavior. Limiting DAG width is
// the safe approach and will be especially important with global DAGs.
//
// MaxParallelChains default is arbitrarily high to avoid affecting
// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
// sequence over this should have been converted to llvm.memcpy by the
// frontend. It is easy to induce this behavior with .ll code such as:
// %buffer = alloca [4096 x i8]
// %data = load [4096 x i8]* %argPtr
// store [4096 x i8] %data, [4096 x i8]* %buffer
static const unsigned MaxParallelChains = 64;
// Return the calling convention if the Value passed requires ABI mangling as it
// is a parameter to a function or a return value from a function which is not
// an intrinsic.
static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
if (auto *R = dyn_cast<ReturnInst>(V))
return R->getParent()->getParent()->getCallingConv();
if (auto *CI = dyn_cast<CallInst>(V)) {
const bool IsInlineAsm = CI->isInlineAsm();
const bool IsIndirectFunctionCall =
!IsInlineAsm && !CI->getCalledFunction();
// It is possible that the call instruction is an inline asm statement or an
// indirect function call in which case the return value of
// getCalledFunction() would be nullptr.
const bool IsInstrinsicCall =
!IsInlineAsm && !IsIndirectFunctionCall &&
CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
if (!IsInlineAsm && !IsInstrinsicCall)
return CI->getCallingConv();
}
return None;
}
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, const Value *V,
Optional<CallingConv::ID> CC);
/// getCopyFromParts - Create a value that contains the specified legal parts
/// combined into the value they represent. If the parts combine to a type
/// larger than ValueVT then AssertOp can be used to specify whether the extra
/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
/// (ISD::AssertSext).
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, const Value *V,
Optional<CallingConv::ID> CC = None,
Optional<ISD::NodeType> AssertOp = None) {
if (ValueVT.isVector())
return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
CC);
assert(NumParts > 0 && "No parts to assemble!");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Val = Parts[0];
if (NumParts > 1) {
// Assemble the value from multiple parts.
if (ValueVT.isInteger()) {
unsigned PartBits = PartVT.getSizeInBits();
unsigned ValueBits = ValueVT.getSizeInBits();
// Assemble the power of 2 part.
unsigned RoundParts = NumParts & (NumParts - 1) ?
1 << Log2_32(NumParts) : NumParts;
unsigned RoundBits = PartBits * RoundParts;
EVT RoundVT = RoundBits == ValueBits ?
ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
SDValue Lo, Hi;
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
if (RoundParts > 2) {
Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
PartVT, HalfVT, V);
Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
RoundParts / 2, PartVT, HalfVT, V);
} else {
Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
}
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
if (RoundParts < NumParts) {
// Assemble the trailing non-power-of-2 part.
unsigned OddParts = NumParts - RoundParts;
EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
OddVT, V, CC);
// Combine the round and odd parts.
Lo = Val;
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
Hi =
DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
DAG.getConstant(Lo.getValueSizeInBits(), DL,
TLI.getPointerTy(DAG.getDataLayout())));
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
}
} else if (PartVT.isFloatingPoint()) {
// FP split into multiple FP parts (for ppcf128)
assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
"Unexpected split");
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
} else {
// FP split into integer parts (soft fp)
assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split");
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
}
}
// There is now one part, held in Val. Correct it to match ValueVT.
// PartEVT is the type of the register class that holds the value.
// ValueVT is the type of the inline asm operation.
EVT PartEVT = Val.getValueType();
if (PartEVT == ValueVT)
return Val;
if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
ValueVT.bitsLT(PartEVT)) {
// For an FP value in an integer part, we need to truncate to the right
// width first.
PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
}
// Handle types that have the same size.
if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
// Handle types with different sizes.
if (PartEVT.isInteger() && ValueVT.isInteger()) {
if (ValueVT.bitsLT(PartEVT)) {
// For a truncate, see if we have any information to
// indicate whether the truncated bits will always be
// zero or sign-extension.
if (AssertOp.hasValue())
Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
DAG.getValueType(ValueVT));
return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
}
return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
}
if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
// FP_ROUND's are always exact here.
if (ValueVT.bitsLT(Val.getValueType()))
return DAG.getNode(
ISD::FP_ROUND, DL, ValueVT, Val,
DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
}
llvm_unreachable("Unknown mismatch!");
}
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
const Twine &ErrMsg) {
const Instruction *I = dyn_cast_or_null<Instruction>(V);
if (!V)
return Ctx.emitError(ErrMsg);
const char *AsmError = ", possible invalid constraint for vector type";
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (isa<InlineAsm>(CI->getCalledValue()))
return Ctx.emitError(I, ErrMsg + AsmError);
return Ctx.emitError(I, ErrMsg);
}
/// getCopyFromPartsVector - Create a value that contains the specified legal
/// parts combined into the value they represent. If the parts combine to a
/// type larger than ValueVT then AssertOp can be used to specify whether the
/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
/// ValueVT (ISD::AssertSext).
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, const Value *V,
Optional<CallingConv::ID> CallConv) {
assert(ValueVT.isVector() && "Not a vector value");
assert(NumParts > 0 && "No parts to assemble!");
const bool IsABIRegCopy = CallConv.hasValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Val = Parts[0];
// Handle a multi-element vector.
if (NumParts > 1) {
EVT IntermediateVT;
MVT RegisterVT;
unsigned NumIntermediates;
unsigned NumRegs;
if (IsABIRegCopy) {
NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
*DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
NumIntermediates, RegisterVT);
} else {
NumRegs =
TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
NumIntermediates, RegisterVT);
}
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
NumParts = NumRegs; // Silence a compiler warning.
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
assert(RegisterVT.getSizeInBits() ==
Parts[0].getSimpleValueType().getSizeInBits() &&
"Part type sizes don't match!");
// Assemble the parts into intermediate operands.
SmallVector<SDValue, 8> Ops(NumIntermediates);
if (NumIntermediates == NumParts) {
// If the register was not expanded, truncate or copy the value,
// as appropriate.
for (unsigned i = 0; i != NumParts; ++i)
Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
PartVT, IntermediateVT, V);
} else if (NumParts > 0) {
// If the intermediate type was expanded, build the intermediate
// operands from the parts.
assert(NumParts % NumIntermediates == 0 &&
"Must expand into a divisible number of parts!");
unsigned Factor = NumParts / NumIntermediates;
for (unsigned i = 0; i != NumIntermediates; ++i)
Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
PartVT, IntermediateVT, V);
}
// Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
// intermediate operands.
EVT BuiltVectorTy =
EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
(IntermediateVT.isVector()
? IntermediateVT.getVectorNumElements() * NumParts
: NumIntermediates));
Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR,
DL, BuiltVectorTy, Ops);
}
// There is now one part, held in Val. Correct it to match ValueVT.
EVT PartEVT = Val.getValueType();
if (PartEVT == ValueVT)
return Val;
if (PartEVT.isVector()) {
// If the element type of the source/dest vectors are the same, but the
// parts vector has more elements than the value vector, then we have a
// vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
// elements we want.
if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
"Cannot narrow, it would be a lossy transformation");
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
// Vector/Vector bitcast.
if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
"Cannot handle this kind of promotion");
// Promoted vector extract
return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
}
// Trivial bitcast if the types are the same size and the destination
// vector type is legal.
if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
TLI.isTypeLegal(ValueVT))
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
if (ValueVT.getVectorNumElements() != 1) {
// Certain ABIs require that vectors are passed as integers. For vectors
// are the same size, this is an obvious bitcast.
if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
} else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
// Bitcast Val back the original type and extract the corresponding
// vector we want.
unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
ValueVT.getVectorElementType(), Elts);
Val = DAG.getBitcast(WiderVecType, Val);
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
diagnosePossiblyInvalidConstraint(
*DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
return DAG.getUNDEF(ValueVT);
}
// Handle cases such as i8 -> <1 x i1>
EVT ValueSVT = ValueVT.getVectorElementType();
if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
: DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
return DAG.getBuildVector(ValueVT, DL, Val);
}
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
SDValue Val, SDValue *Parts, unsigned NumParts,
MVT PartVT, const Value *V,
Optional<CallingConv::ID> CallConv);
/// getCopyToParts - Create a series of nodes that contain the specified value
/// split into legal parts. If the parts contain more bits than Val, then, for
/// integers, ExtendKind can be used to specify how to generate the extra bits.
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
SDValue *Parts, unsigned NumParts, MVT PartVT,
const Value *V,
Optional<CallingConv::ID> CallConv = None,
ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
EVT ValueVT = Val.getValueType();
// Handle the vector case separately.
if (ValueVT.isVector())
return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
CallConv);
unsigned PartBits = PartVT.getSizeInBits();
unsigned OrigNumParts = NumParts;
assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
"Copying to an illegal type!");
if (NumParts == 0)
return;
assert(!ValueVT.isVector() && "Vector case handled elsewhere");
EVT PartEVT = PartVT;
if (PartEVT == ValueVT) {
assert(NumParts == 1 && "No-op copy with multiple parts!");
Parts[0] = Val;
return;
}
if (NumParts * PartBits > ValueVT.getSizeInBits()) {
// If the parts cover more bits than the value has, promote the value.
if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
assert(NumParts == 1 && "Do not know what to promote to!");
Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
} else {
if (ValueVT.isFloatingPoint()) {
// FP values need to be bitcast, then extended if they are being put
// into a larger container.
ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
}
assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
ValueVT.isInteger() &&
"Unknown mismatch!");
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
if (PartVT == MVT::x86mmx)
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
}
} else if (PartBits == ValueVT.getSizeInBits()) {
// Different types of the same size.
assert(NumParts == 1 && PartEVT != ValueVT);
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
} else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
// If the parts cover less bits than value has, truncate the value.
assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
ValueVT.isInteger() &&
"Unknown mismatch!");
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
if (PartVT == MVT::x86mmx)
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
}
// The value may have changed - recompute ValueVT.
ValueVT = Val.getValueType();
assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
"Failed to tile the value with PartVT!");
if (NumParts == 1) {
if (PartEVT != ValueVT) {
diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
"scalar-to-vector conversion failed");
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
}
Parts[0] = Val;
return;
}
// Expand the value into multiple parts.
if (NumParts & (NumParts - 1)) {
// The number of parts is not a power of 2. Split off and copy the tail.
assert(PartVT.isInteger() && ValueVT.isInteger() &&
"Do not know what to expand to!");
unsigned RoundParts = 1 << Log2_32(NumParts);
unsigned RoundBits = RoundParts * PartBits;
unsigned OddParts = NumParts - RoundParts;
SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
DAG.getIntPtrConstant(RoundBits, DL));
getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
CallConv);
if (DAG.getDataLayout().isBigEndian())
// The odd parts were reversed by getCopyToParts - unreverse them.
std::reverse(Parts + RoundParts, Parts + NumParts);
NumParts = RoundParts;
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
}
// The number of parts is a power of 2. Repeatedly bisect the value using
// EXTRACT_ELEMENT.
Parts[0] = DAG.getNode(ISD::BITCAST, DL,
EVT::getIntegerVT(*DAG.getContext(),
ValueVT.getSizeInBits()),
Val);
for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
for (unsigned i = 0; i < NumParts; i += StepSize) {
unsigned ThisBits = StepSize * PartBits / 2;
EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
SDValue &Part0 = Parts[i];
SDValue &Part1 = Parts[i+StepSize/2];
Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
if (ThisBits == PartBits && ThisVT != PartVT) {
Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
}
}
}
if (DAG.getDataLayout().isBigEndian())
std::reverse(Parts, Parts + OrigNumParts);
}
static SDValue widenVectorToPartType(SelectionDAG &DAG,
SDValue Val, const SDLoc &DL, EVT PartVT) {
if (!PartVT.isVector())
return SDValue();
EVT ValueVT = Val.getValueType();
unsigned PartNumElts = PartVT.getVectorNumElements();
unsigned ValueNumElts = ValueVT.getVectorNumElements();
if (PartNumElts > ValueNumElts &&
PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
EVT ElementVT = PartVT.getVectorElementType();
// Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
// undef elements.
SmallVector<SDValue, 16> Ops;
DAG.ExtractVectorElements(Val, Ops);
SDValue EltUndef = DAG.getUNDEF(ElementVT);
for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
Ops.push_back(EltUndef);
// FIXME: Use CONCAT for 2x -> 4x.
return DAG.getBuildVector(PartVT, DL, Ops);
}
return SDValue();
}
/// getCopyToPartsVector - Create a series of nodes that contain the specified
/// value split into legal parts.
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
SDValue Val, SDValue *Parts, unsigned NumParts,
MVT PartVT, const Value *V,
Optional<CallingConv::ID> CallConv) {
EVT ValueVT = Val.getValueType();
assert(ValueVT.isVector() && "Not a vector");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const bool IsABIRegCopy = CallConv.hasValue();
if (NumParts == 1) {
EVT PartEVT = PartVT;
if (PartEVT == ValueVT) {
// Nothing to do.
} else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
// Bitconvert vector->vector case.
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
} else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
Val = Widened;
} else if (PartVT.isVector() &&
PartEVT.getVectorElementType().bitsGE(
ValueVT.getVectorElementType()) &&
PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
// Promoted vector extract
Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
} else {
if (ValueVT.getVectorNumElements() == 1) {
Val = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
} else {
assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
"lossy conversion of vector to scalar type");
EVT IntermediateType =
EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
Val = DAG.getBitcast(IntermediateType, Val);
Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
}
}
assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
Parts[0] = Val;
return;
}
// Handle a multi-element vector.
EVT IntermediateVT;
MVT RegisterVT;
unsigned NumIntermediates;
unsigned NumRegs;
if (IsABIRegCopy) {
NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
*DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
NumIntermediates, RegisterVT);
} else {
NumRegs =
TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
NumIntermediates, RegisterVT);
}
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
NumParts = NumRegs; // Silence a compiler warning.
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
unsigned IntermediateNumElts = IntermediateVT.isVector() ?
IntermediateVT.getVectorNumElements() : 1;
// Convert the vector to the appropiate type if necessary.
unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
EVT BuiltVectorTy = EVT::getVectorVT(
*DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
if (ValueVT != BuiltVectorTy) {
if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
Val = Widened;
Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
}
// Split the vector into intermediate operands.
SmallVector<SDValue, 8> Ops(NumIntermediates);
for (unsigned i = 0; i != NumIntermediates; ++i) {
if (IntermediateVT.isVector()) {
Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
} else {
Ops[i] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
DAG.getConstant(i, DL, IdxVT));
}
}
// Split the intermediate operands into legal parts.
if (NumParts == NumIntermediates) {
// If the register was not expanded, promote or copy the value,
// as appropriate.
for (unsigned i = 0; i != NumParts; ++i)
getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
} else if (NumParts > 0) {
// If the intermediate type was expanded, split each the value into
// legal parts.
assert(NumIntermediates != 0 && "division by zero");
assert(NumParts % NumIntermediates == 0 &&
"Must expand into a divisible number of parts!");
unsigned Factor = NumParts / NumIntermediates;
for (unsigned i = 0; i != NumIntermediates; ++i)
getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
CallConv);
}
}
RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
EVT valuevt, Optional<CallingConv::ID> CC)
: ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
RegCount(1, regs.size()), CallConv(CC) {}
RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
const DataLayout &DL, unsigned Reg, Type *Ty,
Optional<CallingConv::ID> CC) {
ComputeValueVTs(TLI, DL, Ty, ValueVTs);
CallConv = CC;
for (EVT ValueVT : ValueVTs) {
unsigned NumRegs =
isABIMangled()
? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
: TLI.getNumRegisters(Context, ValueVT);
MVT RegisterVT =
isABIMangled()
? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
: TLI.getRegisterType(Context, ValueVT);
for (unsigned i = 0; i != NumRegs; ++i)
Regs.push_back(Reg + i);
RegVTs.push_back(RegisterVT);
RegCount.push_back(NumRegs);
Reg += NumRegs;
}
}
SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
FunctionLoweringInfo &FuncInfo,
const SDLoc &dl, SDValue &Chain,
SDValue *Flag, const Value *V) const {
// A Value with type {} or [0 x %t] needs no registers.
if (ValueVTs.empty())
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Assemble the legal parts into the final values.
SmallVector<SDValue, 4> Values(ValueVTs.size());
SmallVector<SDValue, 8> Parts;
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
// Copy the legal parts from the registers.
EVT ValueVT = ValueVTs[Value];
unsigned NumRegs = RegCount[Value];
MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
*DAG.getContext(),
CallConv.getValue(), RegVTs[Value])
: RegVTs[Value];
Parts.resize(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i) {
SDValue P;
if (!Flag) {
P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
} else {
P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
*Flag = P.getValue(2);
}
Chain = P.getValue(1);
Parts[i] = P;
// If the source register was virtual and if we know something about it,
// add an assert node.
if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
!RegisterVT.isInteger())
continue;
const FunctionLoweringInfo::LiveOutInfo *LOI =
FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
if (!LOI)
continue;
unsigned RegSize = RegisterVT.getScalarSizeInBits();
unsigned NumSignBits = LOI->NumSignBits;
unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
if (NumZeroBits == RegSize) {
// The current value is a zero.
// Explicitly express that as it would be easier for
// optimizations to kick in.
Parts[i] = DAG.getConstant(0, dl, RegisterVT);
continue;
}
// FIXME: We capture more information than the dag can represent. For
// now, just use the tightest assertzext/assertsext possible.
bool isSExt;
EVT FromVT(MVT::Other);
if (NumZeroBits) {
FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
isSExt = false;
} else if (NumSignBits > 1) {
FromVT =
EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
isSExt = true;
} else {
continue;
}
// Add an assertion node.
assert(FromVT != MVT::Other);
Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
RegisterVT, P, DAG.getValueType(FromVT));
}
Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
RegisterVT, ValueVT, V, CallConv);
Part += NumRegs;
Parts.clear();
}
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
}
void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain, SDValue *Flag,
const Value *V,
ISD::NodeType PreferredExtendType) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
ISD::NodeType ExtendKind = PreferredExtendType;
// Get the list of the values's legal parts.
unsigned NumRegs = Regs.size();
SmallVector<SDValue, 8> Parts(NumRegs);
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
unsigned NumParts = RegCount[Value];
MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
*DAG.getContext(),
CallConv.getValue(), RegVTs[Value])
: RegVTs[Value];
if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
ExtendKind = ISD::ZERO_EXTEND;
getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
NumParts, RegisterVT, V, CallConv, ExtendKind);
Part += NumParts;
}
// Copy the parts into the registers.
SmallVector<SDValue, 8> Chains(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i) {
SDValue Part;
if (!Flag) {
Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
} else {
Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
*Flag = Part.getValue(1);
}
Chains[i] = Part.getValue(0);
}
if (NumRegs == 1 || Flag)
// If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
// flagged to it. That is the CopyToReg nodes and the user are considered
// a single scheduling unit. If we create a TokenFactor and return it as
// chain, then the TokenFactor is both a predecessor (operand) of the
// user as well as a successor (the TF operands are flagged to the user).
// c1, f1 = CopyToReg
// c2, f2 = CopyToReg
// c3 = TokenFactor c1, c2
// ...
// = op c3, ..., f2
Chain = Chains[NumRegs-1];
else
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
}
void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
unsigned MatchingIdx, const SDLoc &dl,
SelectionDAG &DAG,
std::vector<SDValue> &Ops) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
if (HasMatching)
Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
else if (!Regs.empty() &&
TargetRegisterInfo::isVirtualRegister(Regs.front())) {
// Put the register class of the virtual registers in the flag word. That
// way, later passes can recompute register class constraints for inline
// assembly as well as normal instructions.
// Don't do this for tied operands that can use the regclass information
// from the def.
const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
}
SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
Ops.push_back(Res);
if (Code == InlineAsm::Kind_Clobber) {
// Clobbers should always have a 1:1 mapping with registers, and may
// reference registers that have illegal (e.g. vector) types. Hence, we
// shouldn't try to apply any sort of splitting logic to them.
assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
"No 1:1 mapping from clobbers to regs?");
unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
(void)SP;
for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
assert(
(Regs[I] != SP ||
DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
"If we clobbered the stack pointer, MFI should know about it.");
}
return;
}
for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
MVT RegisterVT = RegVTs[Value];
for (unsigned i = 0; i != NumRegs; ++i) {
assert(Reg < Regs.size() && "Mismatch in # registers expected");
unsigned TheReg = Regs[Reg++];
Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
}
}
}
SmallVector<std::pair<unsigned, unsigned>, 4>
RegsForValue::getRegsAndSizes() const {
SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
unsigned I = 0;
for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
unsigned RegCount = std::get<0>(CountAndVT);
MVT RegisterVT = std::get<1>(CountAndVT);
unsigned RegisterSize = RegisterVT.getSizeInBits();
for (unsigned E = I + RegCount; I != E; ++I)
OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
}
return OutVec;
}
void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
const TargetLibraryInfo *li) {
AA = aa;