-
Notifications
You must be signed in to change notification settings - Fork 12.2k
/
UnwindInfoSection.cpp
698 lines (642 loc) · 28.9 KB
/
UnwindInfoSection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//===- UnwindInfoSection.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnwindInfoSection.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "InputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Parallel.h"
#include <numeric>
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
#define COMMON_ENCODINGS_MAX 127
#define COMPACT_ENCODINGS_MAX 256
#define SECOND_LEVEL_PAGE_BYTES 4096
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_regular_second_level_page_header)) / \
sizeof(unwind_info_regular_second_level_entry))
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_compressed_second_level_page_header)) / \
sizeof(uint32_t))
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
// optimizes space and exception-time lookup. Most DWARF unwind
// entries can be replaced with Compact Unwind entries, but the ones
// that cannot are retained in DWARF form.
//
// This comment will address macro-level organization of the pre-link
// and post-link compact unwind tables. For micro-level organization
// pertaining to the bitfield layout of the 32-bit compact unwind
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
//
// Important clarifying factoids:
//
// * __LD,__compact_unwind is the compact unwind format for compiler
// output and linker input. It is never a final output. It could be
// an intermediate output with the `-r` option which retains relocs.
//
// * __TEXT,__unwind_info is the compact unwind format for final
// linker output. It is never an input.
//
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
//
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
// level) by ascending address, and the pages are referenced by an
// index (1st level) in the section header.
//
// * Following the headers in __TEXT,__unwind_info, the bulk of the
// section contains a vector of compact unwind entries
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
// Adjacent entries with the same encoding can be folded to great
// advantage, achieving a 3-order-of-magnitude reduction in the
// number of entries.
//
// Refer to the definition of unwind_info_section_header in
// compact_unwind_encoding.h for an overview of the format we are encoding
// here.
// TODO(gkm): how do we align the 2nd-level pages?
// The offsets of various fields in the on-disk representation of each compact
// unwind entry.
struct CompactUnwindOffsets {
uint32_t functionAddress;
uint32_t functionLength;
uint32_t encoding;
uint32_t personality;
uint32_t lsda;
CompactUnwindOffsets(size_t wordSize) {
if (wordSize == 8)
init<uint64_t>();
else {
assert(wordSize == 4);
init<uint32_t>();
}
}
private:
template <class Ptr> void init() {
functionAddress = offsetof(Layout<Ptr>, functionAddress);
functionLength = offsetof(Layout<Ptr>, functionLength);
encoding = offsetof(Layout<Ptr>, encoding);
personality = offsetof(Layout<Ptr>, personality);
lsda = offsetof(Layout<Ptr>, lsda);
}
template <class Ptr> struct Layout {
Ptr functionAddress;
uint32_t functionLength;
compact_unwind_encoding_t encoding;
Ptr personality;
Ptr lsda;
};
};
// LLD's internal representation of a compact unwind entry.
struct CompactUnwindEntry {
uint64_t functionAddress;
uint32_t functionLength;
compact_unwind_encoding_t encoding;
Symbol *personality;
InputSection *lsda;
};
using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
struct SecondLevelPage {
uint32_t kind;
size_t entryIndex;
size_t entryCount;
size_t byteCount;
std::vector<compact_unwind_encoding_t> localEncodings;
EncodingMap localEncodingIndexes;
};
// UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
// lengthy definition of UnwindInfoSection.
class UnwindInfoSectionImpl final : public UnwindInfoSection {
public:
UnwindInfoSectionImpl() : cuOffsets(target->wordSize) {}
uint64_t getSize() const override { return unwindInfoSize; }
void prepareRelocations() override;
void finalize() override;
void writeTo(uint8_t *buf) const override;
private:
void prepareRelocations(ConcatInputSection *);
void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
void encodePersonalities();
uint64_t unwindInfoSize = 0;
std::vector<decltype(symbols)::value_type> symbolsVec;
CompactUnwindOffsets cuOffsets;
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
EncodingMap commonEncodingIndexes;
// The entries here will be in the same order as their originating symbols
// in symbolsVec.
std::vector<CompactUnwindEntry> cuEntries;
// Indices into the cuEntries vector.
std::vector<size_t> cuIndices;
std::vector<Symbol *> personalities;
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
personalityTable;
// Indices into cuEntries for CUEs with a non-null LSDA.
std::vector<size_t> entriesWithLsda;
// Map of cuEntries index to an index within the LSDA array.
DenseMap<size_t, uint32_t> lsdaIndex;
std::vector<SecondLevelPage> secondLevelPages;
uint64_t level2PagesOffset = 0;
};
UnwindInfoSection::UnwindInfoSection()
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
align = 4;
}
// Record function symbols that may need entries emitted in __unwind_info, which
// stores unwind data for address ranges.
//
// Note that if several adjacent functions have the same unwind encoding and
// personality function and no LSDA, they share one unwind entry. For this to
// work, functions without unwind info need explicit "no unwind info" unwind
// entries -- else the unwinder would think they have the unwind info of the
// closest function with unwind info right before in the image. Thus, we add
// function symbols for each unique address regardless of whether they have
// associated unwind info.
void UnwindInfoSection::addSymbol(const Defined *d) {
if (d->unwindEntry)
allEntriesAreOmitted = false;
// We don't yet know the final output address of this symbol, but we know that
// they are uniquely determined by a combination of the isec and value, so
// we use that as the key here.
auto p = symbols.insert({{d->isec, d->value}, d});
// If we have multiple symbols at the same address, only one of them can have
// an associated unwind entry.
if (!p.second && d->unwindEntry) {
assert(!p.first->second->unwindEntry);
p.first->second = d;
}
}
void UnwindInfoSectionImpl::prepareRelocations() {
// This iteration needs to be deterministic, since prepareRelocations may add
// entries to the GOT. Hence the use of a MapVector for
// UnwindInfoSection::symbols.
for (const Defined *d : make_second_range(symbols))
if (d->unwindEntry &&
d->unwindEntry->getName() == section_names::compactUnwind)
prepareRelocations(d->unwindEntry);
}
// Compact unwind relocations have different semantics, so we handle them in a
// separate code path from regular relocations. First, we do not wish to add
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
// actually end up in the final binary. Second, personality pointers always
// reside in the GOT and must be treated specially.
void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
assert(!isec->shouldOmitFromOutput() &&
"__compact_unwind section should not be omitted");
// FIXME: Make this skip relocations for CompactUnwindEntries that
// point to dead-stripped functions. That might save some amount of
// work. But since there are usually just few personality functions
// that are referenced from many places, at least some of them likely
// live, it wouldn't reduce number of got entries.
for (size_t i = 0; i < isec->relocs.size(); ++i) {
Reloc &r = isec->relocs[i];
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
// Functions and LSDA entries always reside in the same object file as the
// compact unwind entries that references them, and thus appear as section
// relocs. There is no need to prepare them. We only prepare relocs for
// personality functions.
if (r.offset != cuOffsets.personality)
continue;
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
// Personality functions are nearly always system-defined (e.g.,
// ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
// application provides its own personality function, it might be
// referenced by an extern Defined symbol reloc, or a local section reloc.
if (auto *defined = dyn_cast<Defined>(s)) {
// XXX(vyng) This is a a special case for handling duplicate personality
// symbols. Note that LD64's behavior is a bit different and it is
// inconsistent with how symbol resolution usually work
//
// So we've decided not to follow it. Instead, simply pick the symbol
// with the same name from the symbol table to replace the local one.
//
// (See discussions/alternatives already considered on D107533)
if (!defined->isExternal())
if (Symbol *sym = symtab->find(defined->getName()))
if (!sym->isLazy())
r.referent = s = sym;
}
if (auto *undefined = dyn_cast<Undefined>(s)) {
treatUndefinedSymbol(*undefined, isec, r.offset);
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
if (isa<Undefined>(s))
continue;
}
if (auto *defined = dyn_cast<Defined>(s)) {
// Check if we have created a synthetic symbol at the same address.
Symbol *&personality =
personalityTable[{defined->isec, defined->value}];
if (personality == nullptr) {
personality = defined;
in.got->addEntry(defined);
} else if (personality != defined) {
r.referent = personality;
}
continue;
}
assert(isa<DylibSymbol>(s));
in.got->addEntry(s);
continue;
}
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
assert(!isCoalescedWeak(referentIsec));
// Personality functions can be referenced via section relocations
// if they live in the same object file. Create placeholder synthetic
// symbols for them in the GOT.
Symbol *&s = personalityTable[{referentIsec, r.addend}];
if (s == nullptr) {
// This runs after dead stripping, so the noDeadStrip argument does not
// matter.
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
r.addend, /*size=*/0, /*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isThumb=*/false, /*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
s->used = true;
in.got->addEntry(s);
}
r.referent = s;
r.addend = 0;
}
}
}
// We need to apply the relocations to the pre-link compact unwind section
// before converting it to post-link form. There should only be absolute
// relocations here: since we are not emitting the pre-link CU section, there
// is no source address to make a relative location meaningful.
void UnwindInfoSectionImpl::relocateCompactUnwind(
std::vector<CompactUnwindEntry> &cuEntries) {
parallelFor(0, symbolsVec.size(), [&](size_t i) {
CompactUnwindEntry &cu = cuEntries[i];
const Defined *d = symbolsVec[i].second;
cu.functionAddress = d->getVA();
if (!d->unwindEntry)
return;
// If we have DWARF unwind info, create a CU entry that points to it.
if (d->unwindEntry->getName() == section_names::ehFrame) {
cu.encoding = target->modeDwarfEncoding | d->unwindEntry->outSecOff;
const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
cu.functionLength = fde.funcLength;
cu.personality = fde.personality;
cu.lsda = fde.lsda;
return;
}
assert(d->unwindEntry->getName() == section_names::compactUnwind);
auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
target->wordSize;
cu.functionLength =
support::endian::read32le(buf + cuOffsets.functionLength);
cu.encoding = support::endian::read32le(buf + cuOffsets.encoding);
for (const Reloc &r : d->unwindEntry->relocs) {
if (r.offset == cuOffsets.personality) {
cu.personality = r.referent.get<Symbol *>();
} else if (r.offset == cuOffsets.lsda) {
if (auto *referentSym = r.referent.dyn_cast<Symbol *>())
cu.lsda = cast<Defined>(referentSym)->isec;
else
cu.lsda = r.referent.get<InputSection *>();
}
}
});
}
// There should only be a handful of unique personality pointers, so we can
// encode them as 2-bit indices into a small array.
void UnwindInfoSectionImpl::encodePersonalities() {
for (size_t idx : cuIndices) {
CompactUnwindEntry &cu = cuEntries[idx];
if (cu.personality == nullptr)
continue;
// Linear search is fast enough for a small array.
auto it = find(personalities, cu.personality);
uint32_t personalityIndex; // 1-based index
if (it != personalities.end()) {
personalityIndex = std::distance(personalities.begin(), it) + 1;
} else {
personalities.push_back(cu.personality);
personalityIndex = personalities.size();
}
cu.encoding |=
personalityIndex << countTrailingZeros(
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
}
if (personalities.size() > 3)
error("too many personalities (" + Twine(personalities.size()) +
") for compact unwind to encode");
}
static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
// From compact_unwind_encoding.h:
// UNWIND_X86_64_MODE_STACK_IND:
// A "frameless" (RBP not used as frame pointer) function large constant
// stack size. This case is like the previous, except the stack size is too
// large to encode in the compact unwind encoding. Instead it requires that
// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
// encoding contains the offset to the nnnnnnnn value in the function in
// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
// Since this means the unwinder has to look at the `subq` in the function
// of the unwind info's unwind address, two functions that have identical
// unwind info can't be folded if it's using this encoding since both
// entries need unique addresses.
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK) ==
static_cast<uint32_t>(UNWIND_X86_MODE_MASK));
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
(encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
// FIXME: Consider passing in the two function addresses and getting
// their two stack sizes off the `subq` and only returning false if they're
// actually different.
return false;
}
return true;
}
// Scan the __LD,__compact_unwind entries and compute the space needs of
// __TEXT,__unwind_info and __TEXT,__eh_frame.
void UnwindInfoSectionImpl::finalize() {
if (symbols.empty())
return;
// At this point, the address space for __TEXT,__text has been
// assigned, so we can relocate the __LD,__compact_unwind entries
// into a temporary buffer. Relocation is necessary in order to sort
// the CU entries by function address. Sorting is necessary so that
// we can fold adjacent CU entries with identical encoding+personality
// and without any LSDA. Folding is necessary because it reduces the
// number of CU entries by as much as 3 orders of magnitude!
cuEntries.resize(symbols.size());
// The "map" part of the symbols MapVector was only needed for deduplication
// in addSymbol(). Now that we are done adding, move the contents to a plain
// std::vector for indexed access.
symbolsVec = symbols.takeVector();
relocateCompactUnwind(cuEntries);
// Rather than sort & fold the 32-byte entries directly, we create a
// vector of indices to entries and sort & fold that instead.
cuIndices.resize(cuEntries.size());
std::iota(cuIndices.begin(), cuIndices.end(), 0);
llvm::sort(cuIndices, [&](size_t a, size_t b) {
return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
});
// Fold adjacent entries with matching encoding+personality and without LSDA
// We use three iterators on the same cuIndices to fold in-situ:
// (1) `foldBegin` is the first of a potential sequence of matching entries
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
// entries that can be folded into a single entry and written to ...
// (3) `foldWrite`
auto foldWrite = cuIndices.begin();
for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
auto foldEnd = foldBegin;
// Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
// a base address. The base address is normally not contained directly in
// the LSDA, and in that case, the personality function treats the starting
// address of the function (which is computed by the unwinder) as the base
// address and interprets the LSDA accordingly. The unwinder computes the
// starting address of a function as the address associated with its CU
// entry. For this reason, we cannot fold adjacent entries if they have an
// LSDA, because folding would make the unwinder compute the wrong starting
// address for the functions with the folded entries, which in turn would
// cause the personality function to misinterpret the LSDA for those
// functions. In the very rare case where the base address is encoded
// directly in the LSDA, two functions at different addresses would
// necessarily have different LSDAs, so their CU entries would not have been
// folded anyway.
while (++foldEnd < cuIndices.end() &&
cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
!cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
// If we've gotten to this point, we don't have an LSDA, which should
// also imply that we don't have a personality function, since in all
// likelihood a personality function needs the LSDA to do anything
// useful. It can be technically valid to have a personality function
// and no LSDA though (e.g. the C++ personality __gxx_personality_v0
// is just a no-op without LSDA), so we still check for personality
// function equivalence to handle that case.
cuEntries[*foldBegin].personality ==
cuEntries[*foldEnd].personality &&
canFoldEncoding(cuEntries[*foldEnd].encoding))
;
*foldWrite++ = *foldBegin;
foldBegin = foldEnd;
}
cuIndices.erase(foldWrite, cuIndices.end());
encodePersonalities();
// Count frequencies of the folded encodings
EncodingMap encodingFrequencies;
for (size_t idx : cuIndices)
encodingFrequencies[cuEntries[idx].encoding]++;
// Make a vector of encodings, sorted by descending frequency
for (const auto &frequency : encodingFrequencies)
commonEncodings.emplace_back(frequency);
llvm::sort(commonEncodings,
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
const std::pair<compact_unwind_encoding_t, size_t> &b) {
if (a.second == b.second)
// When frequencies match, secondarily sort on encoding
// to maintain parity with validate-unwind-info.py
return a.first > b.first;
return a.second > b.second;
});
// Truncate the vector to 127 elements.
// Common encoding indexes are limited to 0..126, while encoding
// indexes 127..255 are local to each second-level page
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
commonEncodings.resize(COMMON_ENCODINGS_MAX);
// Create a map from encoding to common-encoding-table index
for (size_t i = 0; i < commonEncodings.size(); i++)
commonEncodingIndexes[commonEncodings[i].first] = i;
// Split folded encodings into pages, where each page is limited by ...
// (a) 4 KiB capacity
// (b) 24-bit difference between first & final function address
// (c) 8-bit compact-encoding-table index,
// for which 0..126 references the global common-encodings table,
// and 127..255 references a local per-second-level-page table.
// First we try the compact format and determine how many entries fit.
// If more entries fit in the regular format, we use that.
for (size_t i = 0; i < cuIndices.size();) {
size_t idx = cuIndices[i];
secondLevelPages.emplace_back();
SecondLevelPage &page = secondLevelPages.back();
page.entryIndex = i;
uint64_t functionAddressMax =
cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
size_t n = commonEncodings.size();
size_t wordsRemaining =
SECOND_LEVEL_PAGE_WORDS -
sizeof(unwind_info_compressed_second_level_page_header) /
sizeof(uint32_t);
while (wordsRemaining >= 1 && i < cuIndices.size()) {
idx = cuIndices[i];
const CompactUnwindEntry *cuPtr = &cuEntries[idx];
if (cuPtr->functionAddress >= functionAddressMax) {
break;
} else if (commonEncodingIndexes.count(cuPtr->encoding) ||
page.localEncodingIndexes.count(cuPtr->encoding)) {
i++;
wordsRemaining--;
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
page.localEncodings.emplace_back(cuPtr->encoding);
page.localEncodingIndexes[cuPtr->encoding] = n++;
i++;
wordsRemaining -= 2;
} else {
break;
}
}
page.entryCount = i - page.entryIndex;
// If this is not the final page, see if it's possible to fit more
// entries by using the regular format. This can happen when there
// are many unique encodings, and we we saturated the local
// encoding table early.
if (i < cuIndices.size() &&
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
cuIndices.size() - page.entryIndex);
i = page.entryIndex + page.entryCount;
} else {
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
}
}
for (size_t idx : cuIndices) {
lsdaIndex[idx] = entriesWithLsda.size();
if (cuEntries[idx].lsda)
entriesWithLsda.push_back(idx);
}
// compute size of __TEXT,__unwind_info section
level2PagesOffset = sizeof(unwind_info_section_header) +
commonEncodings.size() * sizeof(uint32_t) +
personalities.size() * sizeof(uint32_t) +
// The extra second-level-page entry is for the sentinel
(secondLevelPages.size() + 1) *
sizeof(unwind_info_section_header_index_entry) +
entriesWithLsda.size() *
sizeof(unwind_info_section_header_lsda_index_entry);
unwindInfoSize =
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
}
// All inputs are relocated and output addresses are known, so write!
void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
assert(!cuIndices.empty() && "call only if there is unwind info");
// section header
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
uip->version = 1;
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
uip->commonEncodingsArrayCount = commonEncodings.size();
uip->personalityArraySectionOffset =
uip->commonEncodingsArraySectionOffset +
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
uip->personalityArrayCount = personalities.size();
uip->indexSectionOffset = uip->personalityArraySectionOffset +
(uip->personalityArrayCount * sizeof(uint32_t));
uip->indexCount = secondLevelPages.size() + 1;
// Common encodings
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
for (const auto &encoding : commonEncodings)
*i32p++ = encoding.first;
// Personalities
for (const Symbol *personality : personalities)
*i32p++ = personality->getGotVA() - in.header->addr;
// Level-1 index
uint32_t lsdaOffset =
uip->indexSectionOffset +
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
uint64_t l2PagesOffset = level2PagesOffset;
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
for (const SecondLevelPage &page : secondLevelPages) {
size_t idx = cuIndices[page.entryIndex];
iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
iep->secondLevelPagesSectionOffset = l2PagesOffset;
iep->lsdaIndexArraySectionOffset =
lsdaOffset + lsdaIndex.lookup(idx) *
sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
}
// Level-1 sentinel
const CompactUnwindEntry &cuEnd = cuEntries[cuIndices.back()];
iep->functionOffset =
cuEnd.functionAddress - in.header->addr + cuEnd.functionLength;
iep->secondLevelPagesSectionOffset = 0;
iep->lsdaIndexArraySectionOffset =
lsdaOffset + entriesWithLsda.size() *
sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
// LSDAs
auto *lep =
reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
for (size_t idx : entriesWithLsda) {
const CompactUnwindEntry &cu = cuEntries[idx];
lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
lep->functionOffset = cu.functionAddress - in.header->addr;
lep++;
}
// Level-2 pages
auto *pp = reinterpret_cast<uint32_t *>(lep);
for (const SecondLevelPage &page : secondLevelPages) {
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
uintptr_t functionAddressBase =
cuEntries[cuIndices[page.entryIndex]].functionAddress;
auto *p2p =
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_compressed_second_level_page_header);
p2p->entryCount = page.entryCount;
p2p->encodingsPageOffset =
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
p2p->encodingsCount = page.localEncodings.size();
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry &cue =
cuEntries[cuIndices[page.entryIndex + i]];
auto it = commonEncodingIndexes.find(cue.encoding);
if (it == commonEncodingIndexes.end())
it = page.localEncodingIndexes.find(cue.encoding);
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
(cue.functionAddress - functionAddressBase);
}
if (!page.localEncodings.empty())
memcpy(ep, page.localEncodings.data(),
page.localEncodings.size() * sizeof(uint32_t));
} else {
auto *p2p =
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_regular_second_level_page_header);
p2p->entryCount = page.entryCount;
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry &cue =
cuEntries[cuIndices[page.entryIndex + i]];
*ep++ = cue.functionAddress;
*ep++ = cue.encoding;
}
}
pp += SECOND_LEVEL_PAGE_WORDS;
}
}
UnwindInfoSection *macho::makeUnwindInfoSection() {
return make<UnwindInfoSectionImpl>();
}