-
Notifications
You must be signed in to change notification settings - Fork 1
/
sec_2_1.tex.bak
491 lines (376 loc) · 15.6 KB
/
sec_2_1.tex.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
\begin{frame}
\frametitle{About This Work...}
\emph{Graph Model Based Indoor Tracking}.~\cite{DBLP:conf/mdm/JensenLY09} \\
C.~S. Jensen, H.~Lu, and B.~Yang.\\~\\
\begin{itemize}
\item Published in year 2009, \emph{MDM} conference.
\item A pioneering work that introduces base graph model to indoor data management.
\item Detailed tracking algorithms are designed for RFID-based positioning.
\item Easy to understand, with comprehensive concepts.
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
\item We are spending most of our time in indoor spaces
\begin{itemize}
\item Office building, University, Shopping Centers, etc.
\end{itemize}
\item We cannot use GPS-based tracking indoor movements
\begin{itemize}
\item Indoor navigation and route guidance (museum)
\item Flow analysis
\begin{itemize}
\item how do people use the indoor space $\rightarrow$ important in pricing of advertisement space in store rental
\end{itemize}
\end{itemize}
\item We can use other technology...
\begin{itemize}
\item Wi-Fi, Infrared, Bluetooth or RFID
\item This paper is focusing on RFID, since it is now mature and effortless
\item RFID tags are cheap and RFID reader are expensive
\end{itemize}
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Idea}
\begin{columns}[c]
\column{.6\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-1.pdf}
\end{figure}
\column{.4\textwidth}
\pause
\textbf{Goal:} \textrm{Improve indoor tracking accuracy from a data management perspective, to capture where a particular object can be at a particular time.}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Base Graph Model}
\small{By capturing the essential connectivity and accessibility, \textbf{Base Graph} describes the topology of a floor plan of a possibly complex indoor space.}
\begin{columns}[c]
\column{.45\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-2.pdf}
\end{figure}
\column{.55\textwidth}
\begin{block}{Connectivity Base Graph}
a labeled, undirected graph.
\textrm{
\begin{itemize}
\item $\mathnormal{G_{conn} = \{V, E_d, \Sigma_{door}\}}$
\item $\mathnormal{V}$: each separate partition is represented as a vertex
\item $\mathnormal{E_d}$: each door is captured as an edge%, i.e., $\mathnormal{(\{v_i,v_j}, k)}$
\item $\mathnormal{\Sigma_{door}}$: a set of edge labels that represent connections
\end{itemize}
}
\end{block}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Base Graph Model}
\small{\textbf{Accessibility Graph} is constructed to represent the movement permitted by doors or connections.}
\begin{columns}[c]
\column{.45\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-3.pdf}
\end{figure}
\column{.55\textwidth}
\begin{block}{Accessibility Graph}
a labeled, directed graph.
\textrm{
\begin{itemize}
\item $\mathnormal{G_{accs} = \{V, E, \Sigma_{door}, l_e\}}$
\item $\mathnormal{V}$: the set of vertices
\item $\mathnormal{E}$: the set of directed edges, i.e., $\mathnormal{E=\{\langle v_i, v_j\rangle | v_i, v_j \in V \wedge v_i \neq v_j\}}$
\item $\mathnormal{l_e}$: a function that maps edges to subsets of the set of doors, i.e., $\mathnormal{l_e : E \rightarrow 2^{\Sigma_{door}}}$
\end{itemize}
}
\end{block}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Base Graph Model}
\small{In addition to the topological information of a floor plan, its geometrical information should also be captured.}
\\~\\
\pause
The \textrm{\em Building Partitions Mapping} is defined as:
\pause
\begin{equation}
\mathnormal{BuildingPartitions: V \rightarrow Ploygons}
\end{equation}
\\~\\
\pause
The \textrm{\em Doors Mapping} is defined as:
\pause
\begin{equation}
\mathnormal{Doors: \Sigma_{door} \rightarrow Line~Segments}
\end{equation}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID Deployment Graph Model}
\begin{itemize}
\item RFID based proximity analysis
\begin{itemize}
%\item a record is produced when a \emph{RFID tag} approaches a \emph{RFID reader}.
\item RFID readers deployment may cover only part of the space, or it may be capable of only detecting some movements in the space.
\item assume that all RFID readers have disjoint activation ranges.
\end{itemize}
\item Types of RFID readers
\begin{itemize}
\item \textbf{Partitioning Readers} partition the indoor space into cells in the sense that an object cannot move from one cell to another without being observed.
\item \textbf{Presence Readers} simply observe the presence(and non-presence) of tags in their activation ranges.
\end{itemize}
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID Deployment Graph Model}
\small{Vertices represent cells. A directed edge indicates that one can move from one cell to another without entering other cells, which is detected by a corresponding partitioning reader.}
\begin{columns}[c]
\column{.45\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-4.pdf}
\end{figure}
\column{.55\textwidth}
\begin{block}{RFID Deployment Graph}
a labeled, directed graph.
\textrm{
\begin{itemize}
\item $\mathnormal{G_{RFID} = \{C, E_r, \Sigma_{reader}, l_e\}}$
\item $\mathnormal{C}$: the set of the vertices
\item $\mathnormal{E_r}$: An edge is an ordered pair $\mathnormal{\langle c_i, c_j \rangle}$ of distinct vertices from $\mathnormal{C}$
\item $\mathnormal{l_e}$ maps an edge to a partitioning reader (pair), i.e., $\mathnormal{E_r \rightarrow 2^{\Sigma_{reader}} \cup 2^{\Sigma_{reader} \times \Sigma_{reader}}}$
\end{itemize}
}
\end{block}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID Deployment Graph Construction}
\small{Each cell created by partitioning readers corresponds to one or more base graph partitions.}
\pause
\begin{equation}
\mathnormal{Cells: V \rightarrow C}
\end{equation}
\\~\\
\pause
\small{For each RFID reader, record its accurate deployment location and activation range.}
\pause
\begin{equation}
\begin{split}
\mathnormal{Mapping~1}: & \mathnormal{\Sigma_{reader} \rightarrow \{ (loc, range, flag)~|~loc \in R^2 \wedge} \\
& \mathnormal{range \in (0,d_{max}] \wedge flag \in \{ PAR, PRE \} \}}
\end{split}
\end{equation}
\\~\\
\pause
\small{A mapping of readers to the cells that their activation ranges intersect is introduced as:}
\pause
\begin{equation}
\mathnormal{
Mapping~2: \Sigma_{reader} \rightarrow 2^C
}
\end{equation}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID Deployment Graph Construction}
\begin{columns}[c]
\column{.47\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-5.pdf}
\end{figure}
\column{.53\textwidth}
\scriptsize{
\begin{enumerate}
\item Input: \textrm{the reader set $\mathnormal{R}$, the connectivity base graph $\mathnormal{G_{conn}}$, the accessibility graph $\mathnormal{G_{accs}}$} \pause
\item Lines 1--2: \textrm{Initialize $\mathnormal{G_{RFID}}$, $\mathnormal{DR}$, $\mathnormal{CCs}$} \pause
\item Lines 3--8: \textrm{the relationship of which door is covered by which readers is captured in $\mathnormal{DR}$} \pause
\item Lines 9--13: \textrm{a deployment graph vertex is created for each $\mathnormal{CC}$, mapping $\mathnormal{Cells}$ is also stored} \pause
\item Lines 14--20: \textrm{for each door in $\mathnormal{DR}$, determine if its edges' head and tail are mapped to different cells. If so, add an edge to deployment graph. Function $\mathnormal{readersequence}$ returns the possible reader sequence for that edge}
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID-based Indoor Tracking}
\small{\textbf{Raw Trajectories}: \textrm{Sequences of RFID Tag Observation}}
\begin{columns}[c]
\column{.47\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-6.pdf}
\end{figure}
\scriptsize\textit{
1. each reader detects and reports tags with a sampling rate \\
2. formatted as $\mathnormal{\langle readerID, tagID, t \rangle}$
}
\column{.53\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-7.pdf}
\end{figure}
\vspace{-15pt}
\scriptsize{
\begin{itemize}
\item \emph{vacant time intervals}: unable to observe the moving objects \pause
\item to search RFID deployment graph to infer the possible regions of moving object \pause
\item to apply maximum speed position interpolation to further shrink the possible regions
\end{itemize}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{RFID Readings Pre-processing}
\small{Step-1's output is used in on-line tracking, while Step-2's is used in off-line tracking}
\begin{columns}[c]
\column{.47\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-8.pdf}
\end{figure}
\column{.53\textwidth}
\begin{itemize}
\item $\mathnormal{Flag \in \{ START, END \}}$
\item $\mathnormal{START} \rightarrow$ \textrm{enters the range}
\item $\mathnormal{END} \rightarrow$ \textrm{leaves the range}
\end{itemize}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Off-line Tracking (Refinement Step 1)}
\begin{columns}[c]
\column{.43\textwidth}
\vspace{-15pt}
\begin{figure}[tb]
\includegraphics[width=0.92\columnwidth]{figures/2-1/2-1-9.pdf}
\end{figure}
\vspace{-20pt}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-10.pdf}
\end{figure}
\column{.57\textwidth}
\footnotesize{
\begin{itemize}
\item Step 1 transforms an RFID reading sequence to corresponding vertices or edges in deployment graph
\item If two consecutive reading sequences are \emph{contiguous}, they should stem from a partitioning pair, which map to an edge
\item Otherwise, should come from either a single $\mathnormal{PRE}$ or a $\mathnormal{PAR}$ reader
\item A $\mathnormal{PAR}$ is replaced by the set of corresponding edges according to $\mathnormal{G_{RFID}.{l_e}^{-1}}$
\item A $\mathnormal{PRE}$ always coresponds to one or several cells according to $\mathnormal{Mapping~2}$
\end{itemize}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Off-line Tracking (Refinement Step 2)}
\begin{columns}[c]
\column{.43\textwidth}
\vspace{-15pt}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-10.pdf}
\end{figure}
\vspace{-20pt}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-11.pdf}
\end{figure}
\column{.57\textwidth}
\footnotesize{
\begin{itemize}
\item The \emph{graph elements} from Step 1 indicates some region(s) within which the object may be in during the vacant time interval
\item Check its previous record's tail element and current record's head element, select their intersection as Step 2's candidate
\end{itemize}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Off-line Tracking (Refinement Step 3)}
\begin{columns}[c]
\column{.48\textwidth}
\begin{itemize}
\scriptsize{
\item Calculate the \emph{possible region} $\mathnormal{\Theta}$ according to maximum speed limit
\item Circle based possible region
\begin{itemize}
\tiny{
\item locations: $\mathnormal{P_{9'}}$, $\mathnormal{P_{1'}}$
\item activation ranges: $\mathnormal{R_{9'}}$, $\mathnormal{R_{1'}}$
\item for $\mathnormal{t_x \in [ t_5, t_6 ]}$, $\mathnormal{\Delta t_1 = t_x - reading_2.t^{\vdash}}$, $\mathnormal{\Delta t_2 = reading_3.t^{\dashv} - t_x}$
\item $\mathnormal{R_3 = R_{9'} + V_{max} * \Delta t_1}$, $\mathnormal{R_5 = R_{1'} + V_{max} * \Delta t_2}$
}
\end{itemize}
\item Ellipse based possible region
\begin{itemize}
\tiny{
\item foci: two points belonging to the circle centered at $\mathnormal{P_{9'}}$, $\mathnormal{P_{1'}}$
\item length of major axis is:
\begin{equation*}
\mathnormal{2a = V_{max} * (\Delta t_1 + \Delta t_2)}
\end{equation*}
}
\end{itemize}
}
\end{itemize}
\column{.52\textwidth}
\vspace{-15pt}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-12.pdf}
\end{figure}
\tiny{
$\left.\begin{matrix}
\mathnormal{(reading_1, reader_{9}, tag_1, t_1, t_2)}~~\\
\mathnormal{(reading_2, reader_{9'}, tag_1, t_3, t_4)}~~\\
\mathnormal{(reading_3, reader_{1'}, tag_1, t_7, t_8)}~~\\
\mathnormal{(reading_4, reader_{1}, tag_1, t_9, t_10)}~~
\end{matrix}\right\} \overset{Step~1}{\rightarrow} \pause$ \\~\\~\\
$\left.\begin{matrix}
\mathnormal{(tag_1, [t_1,t_4], e\langle 10,9 \rangle, reader_{9}, reader_{9'})}~~\\
\mathnormal{(tag_1, [t_7,t_{10}], e\langle 9,1 \rangle, reader_{1'}, reader_{1})}~~
\end{matrix}\right\} \overset{Step~2}{\rightarrow} \pause$ \\~\\~\\
$\mathnormal{(tag_1, [t_5,t_6], c_9, reader_{9'}, reader_{1'})} \overset{Step~3}{\rightarrow} \pause$ \\~\\~\\
$\mathnormal{(tag_1, [t_5,t_6], c_9 \cup \Theta(reader_{9'}, reader_{1'}, t_5, t_6))}$
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{On-line Tracking}
\small{\textrm{Given $\mathnormal{\langle readerID, tagID, t, flag \rangle}$. On-line tracking is intended to infer the trajectory in the time interval between the last observation and the current time or even in the future.}}
\\~\\
\begin{columns}[c]
\column{.35\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-1/2-1-13.pdf}
\end{figure}
\column{.65\textwidth}
\footnotesize{
\begin{itemize}
\item $\mathnormal{flag = START}$, object $\mathnormal{tagID}$ is in the activation range of $\mathnormal{readerID}$ at time $\mathnormal{t}$.
\item $\mathnormal{flag = END}$, the object is beyond the activation range of $\mathnormal{readerID}$ and not in the range of any other readers.
\begin{itemize}
\scriptsize{
\item constrains by a circle determined by the most recent observing reader's range.
\item further refined if an object has recently been detected by a partitioning reader pair.
}
\end{itemize}
\end{itemize}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Research Directions}
\begin{itemize}
\item Extend the deployment graphs to accommodate RFID readers with large and overlapping activation ranges. \\~\\
\item Using multiple deployment graphs for several positioning technologies. \\~\\
\item To enhance on-line tracking. Historical data $\rightarrow$ association rules $\rightarrow$ better prediction.
\end{itemize}
\end{frame}