-
Notifications
You must be signed in to change notification settings - Fork 1
/
sec_2_5.tex
429 lines (324 loc) · 15.1 KB
/
sec_2_5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
\begin{frame}
\frametitle{About This Work...}
\emph{A Foundation for Efficient Indoor Distance-Aware Query Processing}.~\cite{DBLP:conf/icde/LuCJ12} \\
H.~Lu, X.~Cao, and C.~S. Jensen.\\~\\
\begin{itemize}
\item Published at \emph{ICDE' 2012}.
\item First time to propose a distance-aware indoor space model that integrates indoor distance seamlessly.
\item Accompanying, efficient algorithms for computing indoor distances.
\item Indexing framework that accommodates indoor distances.
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
\item A variety of LBS services are useful in indoor space.
\begin{fitemize}
\item a museum guidance service in a complex exhibition
\item boarding reminder service in an airport, to remind the passengers especially those far away from their gates or departures
\end{fitemize}
\item Such indoor LBSs will benefit from the availability of accurate indoor distances.
\begin{fitemize}
\item indoor space entities enable as well as constrain indoor movement, thus makes traditional space model for Euclidean/spatial network spaces unsuitable.
\item existing indoor space models~\cite{becker2005location, li2008lattice, becker2009multilayered} pay little attention to indoor distances.
\end{fitemize}
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indoor Topology Mapping Structures}
Mapping $D2P$ maps a door $d_k$ to one or two partition pairs~\footnote{\ssize{the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.}} $(v_i, v_j)$ such that one can move from partition~\footnote{\ssize{a partition indicates a room, a hallway or a staircase.}} $v_i$ to partition $v_j$ through door $d_k$:
\pause
\begin{equation}
D2P: \mathcal{S}_{door} \rightarrow 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}
\end{equation}
\pause
For \emph{enterable partition} of door $d_k$:
\pause
\begin{equation}
D2P_{\sqsupset}: \mathcal{S}_{door} \rightarrow 2^{\mathcal{S}_{partition}}
\end{equation}
\pause
For \emph{leaveable partition} of door $d_k$:
\pause
\begin{equation}
D2P_{\sqsubset}: \mathcal{S}_{door} \rightarrow 2^{\mathcal{S}_{partition}}
\end{equation}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indoor Topology Mapping Structures}
The mapping $P2D_{\sqsupset}$ maps a partition $v$ to all the doors through which one can enter $v$:
\pause
\begin{equation}
P2D_{\sqsupset}: \mathcal{S}_{partition} \rightarrow 2^{\mathcal{S}_{door}}
\end{equation}
\pause
The mapping $P2D_{\sqsubset}$ maps a partition $v$ to all the doors through which one can leave $v$:
\pause
\begin{equation}
P2D_{\sqsubset}: \mathcal{S}_{partition} \rightarrow 2^{\mathcal{S}_{door}}
\end{equation}
\pause
The mapping $P2D$ is used when there's no need to differentiate the directionality:
\pause
\begin{equation}
P2D(v_i): P2D_{\sqsupset}(v_i) \cup P2D_{\sqsubset}(v_i)
\end{equation}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Accessibility Base Graph}
\begin{columns}[c]
\column{0.52\textwidth}
\vspace{-15pt}
\begin{figure}[tb]
\includegraphics[width=0.85\columnwidth]{figures/2-5/2-5-1.pdf}
\end{figure}
\begin{example}
\textrm{
\ssize{
$D2P_{\sqsupset}(d_{12}) = \{ v_{10}\}$, $D2P_{\sqsubset}(d_{12}) = \{ v_{12}\}$
$P2D_{\sqsupset}(v_{13}) = \{ d_{13}\}$, $P2D_{\sqsubset}(v_{13}) = \{ d_{13}, d_{15}\}$
}
}
\end{example}
\column{0.48\textwidth}
\vspace{-15pt}
\begin{figure}[tb]
\includegraphics[width=0.8\columnwidth]{figures/2-5/2-5-2.pdf}
\end{figure}
\vspace{-10pt}
\begin{block}{Accessibility Base Graph}
\textrm{
\ssize{
\begin{itemize}
\item $G_{accs} = \{V, E_a, L\}$
\item $V = \mathcal{S}_{partition}$ is the set of vertices
\item $E_a = \{ (v_i, v_j, d_k) | (v_i, v_j) \in D2P(d_k) \}$ is the set of labeled, directed edges
\item $L = \mathcal{S}_{door}$ is the set of edge labels
\end{itemize}
}
}
\end{block}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Distance-Aware Model}
\fsize{\textrm{The $G_{accs}$ graph does not capture indoor distance information. \conceptbf{Extended Graph Model} is proposed to integrate indoor distances into the graph in a seamless way. \emph{Minimum Indoor Walking Distance}(MIWD) is used. }}
\begin{block}{Extended Graph Model $G_{dist} = \{ V, E_a, L, f_{dv}, f_{d2d} \}$}
\textrm{
\begin{sitemize}
\item $V = \mathcal{S}_{partition}$ is the set of vertices
\item $E_a = G_{accs}.E_a$
\item $L = \mathcal{S}_{door}$ is the set of edge labels
\item $f_{dv} = \mathcal{S} \times V \rightarrow \mathcal{R} \cup \{ \infty \}$ maps an edge to a distance value.
\begin{equation*}
f_{dv} = \left\{\begin{matrix}
\max_{p \in v_j}|| d_i, p || , & if~~ v_j \in D2P_{\sqsupset};
\\
\infty , & otherwise.
\end{matrix}\right.
\end{equation*}
\item $f_{d2d} = V \times \mathcal{S}_{door} \times \mathcal{S}_{door} \rightarrow \mathcal{R} \cup \{ \infty \}$ maps a 3-tuple to a distance value.
\begin{equation*}
f_{dv} = \left\{\begin{matrix}
|| d_i, d_j ||_{v_k} , & if~~ d_i \in P2D_{\sqsupset}(v_k) and d_j \in P2D_{\sqsubset}(v_k);
\\
\infty , & if~~ d_i = d_j and d_i,d_j \in P2D(v_k);
\\
0 , & otherwise.
\end{matrix}\right.
\end{equation*}
\end{sitemize}
}
\end{block}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Computation: \emph{door-to-door distance}}
\begin{columns}[c]
\column{0.52\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-3.pdf}
\end{figure}
\column{0.48\textwidth}
\ssize{
\begin{enumerate}
\item $d_t$ as source door, $d_s$ as destination door, $d2dDistance(d_t, d_s)$ finds the minimum walking distance in a \emph{Dijkstra} way.
\item $dist[d_j]$ stores the current shortest path distance from source $d_s$ to a door $d_j$.
\item $prev[d_j]$ stores the corresponding previous partition and door pair $(v,d_i)$ through which the algorithm visits the current door $d_j$.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Computation: \emph{point-to-point distance} (I)}
\begin{columns}[c]
\column{0.5\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-4.pdf}
\end{figure}
\column{0.5\textwidth}
\ssize{
\begin{enumerate}
\item $getHostPartition(p)$ returns the partition that contains $p$.
\item $dist_V:P \times \mathcal{S}_{door} \rightarrow \mathcal{R} \cup \{ \infty \}$ returns the shortest intra-partition distance between a position $p$ and a door $d$, i.e., the minimum distance one must walk to get from position $p$ to door $d$ without leaving $p$'s host partition.
\item minimum door-to-door distance from each door $d_s$ in $P2D_{\sqsubset}(d_s)$ to each door $P2D_{\sqsupset}(d_t)$ is computed.
\item intra-partition distances $dist_V(p_s,d_s)$ and $dist_V(p_t,d_t)$ are added to that distance to get one possible position-to-position distance.
\item the minimum is returned as the result.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Computation: \emph{point-to-point distance} (II)}
\begin{columns}[c]
\column{0.4\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-5.pdf}
\end{figure}
\column{0.6\textwidth}
\ssize{
\begin{enumerate}
\item lines 1--4: $doors_s$($doors_t$) is initialized to contain all leaving(entering) doors of the source(destination) partition $v_s$($v_t$).
\item lines 5--8: a door $d_s$ in $doors_s$ is excluded if it leads to a non-destination partition that has $d_s$ as its sole leaving door.
\item lines 11--14: for each source door $d_s$, initialize a set $doors$, excluding any destination door $d_t$ that is too far away compared to current shortest distance $dist_m$.
\item lines 15--36: follows the spirit of \emph{Dijkstra}, only visits those doors that allow objects to move out(line 34), also updates the current shortest distance $dist_m$ when a shorter one is found.
\item the current expansion for a door $d_s$ terminates when set $doors$ becomes empty.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Computation: \emph{point-to-point distance} (III)}
\begin{columns}[c]
\column{0.52\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-6.pdf}
\end{figure}
\column{0.48\textwidth}
\ssize{
\begin{enumerate}
\item lines 1--8: initialize as same as the version of \emph{pt2ptDistance2}.
\item lines 9--10: a two-dimensional array $dists[d_i][d_j]$ is employed to store the currently shortest indoor distance from source door $d_i$ to destination door $d_j$.
\item line 15: the condition whether $dist[d_s][d_t]$ is infinity is check together with $dist_{V}(p_s,d_s) + dist_{V}(p_t,d_t) < dist_m $.
\item line 24: initialize $prev[d_i]$ as empty.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Computation: \emph{point-to-point distance} (III)}
\begin{columns}[c]
\vspace{-25pt}
\column{0.44\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-7.pdf}
\end{figure}
\column{0.56\textwidth}
\ssize{
\begin{enumerate}
\item lines 26--31: when a destination door $door_i$ is popped from priority queue $H$ and processed, its previous door $d_j$ on the shortest path is obtained.
\item line 32: backward optimization is continued until the current source door $d_s$ is reached.
\item lines 33--34: if door $d_j$ is a source door and it has not been processed by the for-loop, the shortest distance from $d_j$ to destination door $d_i$ is stored in $dist[d_j][d_i]$.
\item lines 35--36: shortest indoor distance from the source position to the destination is updated if necessary.
\item lines 40--45: a similar optimization also applies to the forward direction. If $d_i$ popped from $H$ is a source door and processed before the current for-loop, the distance can be directly used.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indoor Distance-Aware Indexes}
\begin{definition}[Door-to-Door Distance Matrix]
\textrm{
\ssize{
an $N$-by-$N$ matrix, denoted as $M_{d2d}$, where $N = |\mathcal{S}_{doors}|$ is the total number of doors.Without loss of generality, suppose $1 \leq d_i \leq d_j \leq N$, we have:\\
1) $M_{d2d}[d_i,d_i] = 0$;\\
2) $M_{d2d}[d_i,d_j] = d2dDistance(d_i,d_j)$;\\
3) $M_{d2d}[d_i,d_j]$ may differ from $M_{d2d}[d_j,d_i]$ due to the directed doors.
}}
\end{definition}
\vspace{-10pt}
\begin{columns}[c]
\vspace{-10pt}
\column{0.36\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-8.pdf}
\end{figure}
\vspace{-10pt}
\column{0.36\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-9.pdf}
\end{figure}
\end{columns}
\begin{definition}[Distance Index Matrix]
\textrm{
\ssize{
an $N$-by-$N$ matrix, denoted as $M_{idx}$. Given a door identifier $d_i$, two integer $1 \leq j \leq k \leq N$, $M_{d2d}[d_i,M_{idx}[d_i, j]] \leq M_{d2d}[d_i,M_{idx}[d_i, k]]$.
}}
\end{definition}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indexing Indoor Moving Objects}
\begin{itemize}
\item store objects within the same partition together in an object bucket or several chained buckets.\\~\\
\item a linear table \conceptbf{Door-to-Partition Table} (DPT) is used to store the relationship between doors and partition object bucket. Each record in DPT is a 5-tuple $(d_i, vPtr_1, dist_1, vPtr_2, dist_2)$, where $d_i$ is a door identifier.\\~\\
\item if $D2P(d_i) = \{ (v_j, v_k) \}$, which means that door $d_i$ is directional from partition $v_j$ to $v_k$, then field $vPtr_1$ is a null pointer while $vPtr_2$ is a pointer that points to the object bucket of partition $v_k$, $dist_1$ is $\infty$, and $dist_2$ is $G_{dist}.f_{dv}(d_i, v_k)$.
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Intra-Partition Object Index and Search}
\begin{itemize}
\item a grid index is built for spatial objects in each indoor partition.\\~\\
\item all spatial objects in an indoor partition $v_i$ are organized using a corresponding bucket $B_i$, $B_i$ consists of multiple sub-buckets each of which corresponds to a grid cell.\\~\\
\item for $rangeSearch(B_i,q,r)$, search only those grid cells that overlap the circle centered at $q$ and with radius $r$, if a cell is fully inside the circle, all the objects in its sub-bucket are included directly.\\~\\
\item for $nnSearch(B_i, q, dist_{nn})$, search only those grid cells that overlap the circle centered at $q$ and with radius $dist_{nn}$.
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indoor Distance-Aware Queries: \emph{Range Query}}
\begin{columns}[c]
\column{0.5\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-10.pdf}
\end{figure}
\column{0.5\textwidth}
\ssize{
\begin{enumerate}
\item a range query $Q_r(q,r)$ returns those indoor objects that are within distance $r$ of $q$.
\item lines 1--2: first gets the query position $q$'s host partition $v$ and searches for possibly qualifying objects within $v$ by calling $rangeSearch(v$\textrm{'s} $bucket, p, r)$.
\item lines 4--8: exploiting the index in $M_{idx}[d_i, *]$, the search is conducted in non-descending order of $M_{idx}[d_i, d_j]$, where $d_j$ is a door covered by the distance $r$ from position $q$.
\item lines 12--18: if a partition is entirely within the query range, all objects in corresponding bucket are added to the result.
\end{enumerate}
}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Indoor Distance-Aware Queries: \emph{Nearest Neighbor Query}}
\begin{columns}[c]
\column{0.5\textwidth}
\begin{figure}[tb]
\includegraphics[width=\columnwidth]{figures/2-5/2-5-11.pdf}
\end{figure}
\column{0.5\textwidth}
\ssize{
\begin{enumerate}
\item a nearest neighbor query $Q_{nn}(q,r)$ returns those indoor objects whose distance from $q$ is the samllest among all objects.
\item line 2: $nnSearch(B_i, q, dist_{nn})$ searches an object bucket $B_i$ to find the nearest neighbor from $q$, $dist_{nn}$ is the current shortest distance for fast pruning.
\item lines 4--19: for each door $d_i$ through which one can leave $v$, search is conducted in the similar way as for range query processing.
\end{enumerate}
}
\end{columns}
\end{frame}