forked from jeffwalton/photogrammetry-resection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resection_lsq.py
197 lines (159 loc) · 5.31 KB
/
resection_lsq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Author: Jeffrey T. Walton, Paul Smith's College, New York
#
# Single-photo resection - calculates the camera orientation and location
# given camera calibration parameters, control point photo and world
# coordinates and initial guesses for camera exterior orientation.
#
# based on MATLAB code from:
# Introduction to Modern Photogrammetry by Mikhail, Bethel, McGlone
# John Wiley & Sons, Inc. 2001
import sys
import numpy as np
from scipy.optimize import minimize
def collinearity_eqn_residual(iop,eop,x,y,X,Y,Z):
"""
Usage:
collinearity_eqn_residual(iop,eop,x,y,X,Y,Z)
Inputs:
iop = dict of interior orientation parameters: x0, y0, f
eop = dict of exterior orientation parameters: omega, phi, kappa, XL, YL, ZL
x = array of x photo coordinates of control points
y = array of y photo coordinates of control points
X = array of X world coordinates of control points
Y = array of Y world coordinates of control points
Z = array of Z world coordinates of control points
Returns:
residuals in x and y collinearity equations for a single point as a tuple
"""
from math import sin, cos
x0 = iop['x0']
y0 = iop['y0']
focallength = iop['f']
om = eop['omega']
ph = eop['phi']
kp = eop['kappa']
XL = eop['XL']
YL = eop['YL']
ZL = eop['ZL']
Mom = np.matrix([[1, 0, 0], [0, cos(om), sin(om)], [0, -sin(om), cos(om)]])
Mph = np.matrix([[cos(ph), 0, -sin(ph)], [0, 1, 0], [sin(ph), 0, cos(ph)]])
Mkp = np.matrix([[cos(kp), sin(kp), 0], [-sin(kp), cos(kp), 0], [0, 0, 1]])
M = Mkp * Mph * Mom
uvw = M * np.matrix([[X-XL], [Y-YL], [Z-ZL]])
resx = x - x0 + focallength * uvw[0,0] / uvw[2,0]
resy = y - y0 + focallength * uvw[1,0] / uvw[2,0]
return resx, resy
class CollinearityData:
"""
class to store data for the collinearity equations
"""
def __init__(self, camera_file, point_file):
"""
initilizes data for collinearity equations
reads camera parameters from camera_file
reads control point data from point_file
"""
f = open(camera_file,'r')
dat = np.loadtxt(f,float)
f.close
self.eop = {}
# data from lines 1-3 of the camera_file
self.eop['omega'] = dat[0]
self.eop['phi'] = dat[1]
self.eop['kappa'] = dat[2]
# data from lines 4-6 of the camera_file
self.eop['XL'] = dat[3]
self.eop['YL'] = dat[4]
self.eop['ZL'] = dat[5]
self.iop = {}
# data from lines 7-9 of the camera_file
self.iop['x0'] = dat[6]
self.iop['y0'] = dat[7]
self.iop['f'] = dat[8]
self.label = []
x = []
y = []
X = []
Y = []
Z = []
f = open(point_file,'r')
for line in f:
l = line.split()
# each line has 6 values: label, x, y, X, Y, Z (whitespace delimited)
self.label.append(l[0])
x.append(float(l[1]))
y.append(float(l[2]))
X.append(float(l[3]))
Y.append(float(l[4]))
Z.append(float(l[5]))
f.close
self.x = np.array(x)
self.y = np.array(y)
self.X = np.array(X)
self.Y = np.array(Y)
self.Z = np.array(Z)
def coll_func(indep_vars):
"""
collinearity function calculates a sum of the squared residuals of the
collinearity equations for all of the control points
This function is passed to scipy.optimize.minimize()
Inputs:
indep_vars (passed) are the exterior orientation parameters of the camera
data (global) camera interior calibration data, photo points, control points
Returns:
sum of squared residuals of collinearity eqns
"""
global data
iop = data.iop
#eop = data.eop
label = data.label
x = data.x
y = data.y
X = data.X
Y = data.Y
Z = data.Z
eop = {}
eop['omega'] = indep_vars[0]
eop['phi'] = indep_vars[1]
eop['kappa'] = indep_vars[2]
eop['XL'] = indep_vars[3]
eop['YL'] = indep_vars[4]
eop['ZL'] = indep_vars[5]
i = 0
F = 0.0
for l in label:
F1, F2 = collinearity_eqn_residual(iop,eop,x[i],y[i],X[i],Y[i],Z[i])
F += F1**2 + F2**2
i += 1
return F
if len(sys.argv) > 1:
camera_file = sys.argv[1]
else:
#camera_file = 'E://WebcamFinse//Cucza//CamCucza.inp'
camera_file = 'E://WebcamFinse//CamFinseInit.inp'
if len(sys.argv) > 2:
point_file = sys.argv[2]
else:
#point_file = 'E://WebcamFinse//Cucza//GCPs_Centered.inp'
point_file = 'E://WebcamFinse//GCPs_WebcamFinse_Centered.inp'
data = CollinearityData(camera_file, point_file)
x0 = np.zeros(6)
# initilaize guesses for eop as read from file
eop = data.eop
x0[0] = eop['omega']
x0[1] = eop['phi']
x0[2] = eop['kappa']
x0[3] = eop['XL']
x0[4] = eop['YL']
x0[5] = eop['ZL']
eps = np.array([4.8e-06, 4.8e-06, 4.8e-06, 1.0e-01, 1.0e-01, 1.0e-01]) # numerical differentiation step size
res = minimize(coll_func, x0, jac=False, method='BFGS', options={'eps': eps, 'disp': True})
#res = minimize(coll_func, x0, options={'disp': True})
#print res.x
print('Solution:')
print('omega, ', res.x[0])
print('phi, ', res.x[1])
print('kappa, ', res.x[2])
print('XL, ', res.x[3])
print('YL, ', res.x[4])
print('ZL, ', res.x[5])