222_working_with_large_data_that_does_not_fit_memory_semantic_segm
228_semantic_segmentation_of_aerial_imagery_using_unet
229_smooth_predictions_by_blending_patches
230_landcover_dataset_segmentation
231_234_BraTa2020_Unet_segmentation
235-236_pre-training_unet_using_autoencoders
237_tflite_using_malaria_binary_classification
238_face_eye_detection_using_opencv
239_train_emotion_detection
240_train_age_gender_detection
241_live_age_gender_emotion_detection
242 - Real time detection of facial emotion, age, and gender using TensorFlow Lite
243 - Real time detection of facial emotion, age, and gender using TensorFlow Lite on RaspberryPi
244-what_are_embedding_layers
245 - Advantages of keras functional API in defining complex models
246 - Training a keras model by enumerating epochs and batches
248_keras_implementation_of_GAN
249_keras_implementation-of_conditional_GAN
251_satellite_image_to_maps_translation
252_generating_realistic_scientific_images_using_pix2pix
253_254_cycleGAN_monet2photo
257 - Exploring GAN latent space to generate images with desired features
257-arithmetic_with_GAN_latent_vectors_predict_V2.0.py
257-arithmetic_with_GAN_latent_vectors_train_128x128.py
260_image_anomaly_detection_using_autoencoders
261_global_average_pooling
262_localizing_anomalies_in_images
263_Object localization in images_using_GAP_layer
264 - Image outlier detection using alibi-detect
265_feature_engineering_or_deep_learning
266_openslide_for_whole_slide_images
267_processing_whole_slide_images
268-How to deploy your trained machine learning model into a local web application
269_How to deploy your trained machine learning model as an app on Heroku
270-How to deploy your trained machine learning model as an app on Heroku-HAM10000-no docker
271-How to deploy your trained machine learning model as an app on Heroku-HAM10000-with docker
272-Instance segmentation via semantic segmentation by using border class
274-object_segmentation_using_voronoi_otsu
tips_tricks_36_pyscript_python_in_the_browser
00_A review of COVID19 situation in India using Python.py
017-Reading_Images_in_Python.py
018-image_processing_in_pillow.py
019-image_processing_in_scipy.py
020-image_processing_in_scikit-image.py
021-scratch_assay_using_scikit_image.py
023-histogram_segmentation_using_scikit_image.py
024-random_walker_segmentation_scikit-image.py
025-image_processing_in_openCV_intro1-preprocessing.py
026-image_processing_in_openCV_intro1-preprocessing.py
027-image_processing_in_openCV_intro2-Thresholding.py
028-image_processing_in_openCV_intro2-Thresholding.py
029-keypoint detectors and descriptors in opencv.py
02_Tips_Tricks_python_tips_and_tricks_2_google_image_download.py
030-keypoints_homography_for_registration in opencv.py
031-reading_and_writing_csv.py
032-grain_analysis_saving_to_csv.py
033-grain_size_analysis_using_wateshed_segmentation.py
034a-grain_size_analysis_using_wateshed_segmentation_multiple_files.py
034b-grain_size_analysis_using_wateshed_segmentation_multiple_files_functions.py
035-Cell Nuclei analysis using watershed.py
036-data_analysis_using_Pandas_Intro_data_loading.py
037-data_analysis_using_Pandas_data_handling.py
038-data_sorting_using_Pandas.py
039-data_grouping_using_Pandas.py
040-dealing with null data_using_Pandas.py
041_data_analysis_using_Pandas_Plotting.py
042_data_analysis_using_Seaborn_Plotting.py
045-linear_regression_cells.py
046-linear_regression_cells_train_test.py
047-multi_linear_regression.py
049-Logistic_regression.py
051-Kmeans_using_opencv.py
052-GMM_image_segmentation.py
053-How to pick optimal number of parameters.py
055-ML_06_01_how to open proprietary images.py
057-ML_06_02_what are features.py
058-ML_06_03_what is gabor filter.py
061-Gabor_Filter_Banks.py
062-066-ML_06_04_TRAIN_ML_segmentation_All_filters_RForest.py
067-ML_06_05_PREDICT_ML_segmentation_All_filters_RForest.py
068b-ML_06_04_TRAIN_ML_segmentation_All_filters_RForest_SVM.py
069b-Validate_BOVW_V1.0.py
071-Malaria_cell_CNN_V5.0_for video.py
074-Defining U-net in Python using Keras.py
076-077-078-Unet_nuclei_tutorial.py
085-auto_encode_single_image_V3.0.py
086--auto_denoise_mnist.py
087-auto_denoise_custom_file_V3.0.py
088-autoencoder_anomaly_V0.1.py
089a-auto_encode_single_image_to_different_image_V1.0.py
089b-auto_encode_single_image_to_different_image_multi_file_V1.0.py
090a-autoencoder_colorize_V0.2.py
090b-autoencoder_colorize_V0.1_predict.py
091_intro_to_transfer_learning_VGG16.py
092-autoencoder_colorize_transfer_learning_VGG16_V0.1.py
093_no_need_for_deep_learning.py
095_what_is_convolution.py
096_What is Gaussian denoising.py
097_What is Median denoising.py
098_What is Bilateral denoising.py
100_What is Total Variation denoising.py
102-What is Unsharp Mask.py
105_what_is_fourier_transform.py
106_image_filters_using_fourier_transform_DFT.py
107_analysis_of_covid19_data_using_python_part1.py
108_analysis_of_covid19_data_using_python_part2.py
109_.predicting_covid19_cases_using_pythonpy.py
110_covid19_visualization_using_plotly.py
111_top_10_countries_with_highest_cases_deaths.py
112_denoising_images_by_dct_averaging.py
113-what_is_histogram_equalization.py
114_auto_image_quality_assessment_BRISQUE.py
115_auto_segmentation_using_multiotsu.py
116_.measuring_properties_of_labeled_objects_in_imagespy.py
117_shading_correction_using_rolling_ball.py
118_object_detection_by_template_matching.py
119_sub_pixel_image_registration.py
120_img_registration_methods_in_python.py
121_image_registration_using_pystackreg.py
122_normalizing_HnE_images.py
123-reference_based_image_quality.py
124-evaluate_sharpness_of_image.py
125_126_GAN_predict_mnist.py
125_126_GAN_training_mnist.py
127_data_augmentation_using_keras.py
128_Malaria_cell_classification_CNN_with_data_aug.py
129_130_131-tips_tricks_callbacks_continuing_training.py
135_model_compile_metrics.py
136_understanding_batch_size.py
138_scaling_and_normalization_cifar_working.py
139-topology_of_neural_networks.py
141-regression_housing_example.py
142-multi_label_classification.py
144_145_binary_classification_ROC_AUC.py
148_imbalanced_data_DeepLearning.py
148_imbalanced_data_RandomForest.py
149-imbalanced_data_liver.py
150_151_custom_data_augmentation.py
150_151_data_augmentation_using_keras_images_and_masks_tutorial.py
152-visualizing_conv_layer_outputs.py
153-multi_linear_regression.py
154_understanding_train_validation_loss_curves.py
156_defining_GPU_memory_usage_for_deep_learning.py
157_understanding_tensorboard.py
158_classification_CNN_RF.py
158b_transfer_learning_using_CNN_weights_VGG16_RF.py
159_CNN_features_RF_sandstone.py
159b_VGG16_imagenet_weights_RF_for_semantic.py
160_when_to_retrain_your_ML_model.py
162-Intro_to_time_series_exploring_dataset_using_python.py
163-Intro_to_time_series_Forecasting_using_ARIMA.py
164a-Intro_to_time_series_Forecasting_using_feed_forward_NN.py
164b-Intro_to_time_series_Forecasting_using_feed_forward_NN_and_TimeseriesGenerator.py
166a-Intro_to_time_series_Forecasting_using_LSTM.py
166b-Intro_to_time_series_Forecasting_using_LSTM_and_TimeseriesGenerator.py
166b_COVID_forecasting_using_LSTM.py
167-LSTM_text_generation_ENGLISH.py
168-LSTM_text_generation_TELUGU_V2.0.py
169_installing_autokeras_and_testing_mnist.py
170-breast_cancer_classification_with_AutoKeras.py
171-multiclass_cifar_with_autokeras.py
173_IOU_VGG16_imagenet_weights_RF_for_semantic.py
175-breast_cancer_without_PCA.py
176-multiclass_using_VGG_weights_PCA_NN_RF.py
177_COLAB_semantic_segmentation_made_easy_using_segm_models.ipynb
177_albumentations_aug.py
177_semantic_segmentation_made_easy_using_segm_models.py
178_179_variational_autoencoders_mnist.py
180_LSTM_encoder_decoder_anomaly_GE.py
181_multivariate_timeseries_LSTM_GE.py
182_batch_processing_multiple_images_in_python.py
183_OCR_in_python_using_keras-ocr.py
184-scheduling_learning_rate_in_keras.py
185-187-gridsearch_hyperparam_tuning_lr_momentum.py
188-gridsearch_hyperparam_tuning_activation_opt_weights.py
189-gridsearch_hyperparam_tuning_dropout_wt_constr_hidden_layer_neurons.py
190-gridsearch_hyperparam_tuning_RF_SVM_MNIST.py
191_measure_img_similarity.py
192_working_with_3d_images.py
193_xgboost_intro_using_wisconsin_dataset.py
194_xgboost_for_semantic_using_VGG_features.py
195_xgboost_for_image_classification_using_VGG16.py
196_lightGBM_feature_selection_breast_cancer.py
197_lgbm_vs_xgboost_for_semantic_using_VGG_features.py
198_Boruta_feature_selection_breast_cancer.py
200_image_classification_using_GLCM.py
201_geotiff_using_rasterio.py
202_2_ways_to_load_HAM10000_data.py
203a_skin_cancer_lesion_classification_V4.0_autokeras.py
203b_skin_cancer_lesion_classification_V4.0.py
204-207simple_unet_model.py
204_train_simple_unet_for_mitochondria.py
205_predict_unet_with_watershed_single_image.py
206_sem_segm_large_images_using_unet_not_recommended.py
206_sem_segm_large_images_using_unet_with_custom_patch_inference.py
206_sem_segm_large_images_using_unet_with_patchify.py
207-simple_unet_model_with_jacard.py
207_train_simple_unet_for_mitochondria_using_Jacard.py
208-simple_multi_unet_model.py
208_multiclass_Unet_sandstone.py
209_predict_full_volume_sandstone.py
210_multiclass_Unet_using_VGG_resnet_inception.py
211_multiclass_Unet_vs_linknet.py
213-ensemble_sign_language.py
214_multiclass_Unet_sandstone_segm_models_ensemble.py
216_mito_unet_12_training_images_V1.0.py
216_mito_unet__xferlearn_12_training_images.py
218_difference_between_Upsampling_and_Conv2DTranspose.py
219-unet_model_with_functions_of_blocks.py
219_unet_small_dataset_using_functional_blocks.py
221_split_folder_into_train_test_val.py
223_test_time_augmentation_for_semantic_segmentation.py
224_225_226_mito_segm_using_various_unet_models.py
227_mito_segm_using_models_from_Keras_Unet_collection.py
67b_Feature_based_segm_RF_multi_image_PREDICT.py
67b_Feature_based_segm_RF_multi_image_TRAIN.py
Book_review_fastai_cookbook.ipynb
Tips_Tricks_10_loading_images_and_masks_in_order_for_sem_segm.ipynb
Tips_Tricks_13_how_to_visualize_keras_models_on_windows10.py
Tips_Tricks_14_easyocr_to_detect_text_in_images.py
Tips_Tricks_23_COVID_vaccine_analysis.ipynb
Tips_Tricks_24_quick_intro_to_pyviz.ipynb
Tips_Tricks_25_locating_objects_in_large_images_via_template_matching.py
Tips_Tricks_26_proper-way_to_convert_16bit_to_8bit_image.py
Tips_Tricks_5_extracting_patches_from_large_images_and_masks_for_semantic_segm.py
Tips_Tricks_6_fixing_generic_utils_bug_in_segm_models_library.py
Tips_tricks_15_understanding_binary_crossentropy.py
Tips_tricks_16_How much memory is required_to_train_a_DL_model.py
Tips_tricks_17_all_you_need_to_know_about_decorators.py
Tips_tricks_20_Understanding transfer learning for different size and channel inputs.py
Tips_tricks_22_fastai_lung_cancer_classification.ipynb
Tips_tricks_27_labeling_images_for_sem_segm_using_label_studio.py
Tips_tricks_35_loading_kaggle_data_to_colab.ipynb
tips_tricks_30_random_is_not_random.py
tips_tricks_31_generating_borders_around_objects.py
tips_tricks_32_automate_periodic_mouse_movements.py
tips_tricks_37_Understanding MAE and MSE.py
tips_tricks_3_data_augmentation.ipynb
Folders and files Name Name Last commit message
Last commit date
parent directory Feb 16, 2022
Feb 16, 2022
Feb 16, 2022
View all files
You can’t perform that action at this time.