The official implementation of the paper ssProp: Energy-Efficient Training for Convolutional Neural Networks with Scheduled Sparse Back Propagation [pdf] by Lujia Zhong, Shuo Huang, Yonggang Shi.
- To train a normal/efficient resnet50 with 0.4 drop rate, simply run
for mode in normal efficient # normal, efficient
do
CUDA_VISIBLE_DEVICES=0 python train_classifier.py --exp runs/newdropout \
--task CIFAR100 --mode $mode --model resnet50 --drop_mode constant --bs 128 --epochs 300 --lr 0.0002 \
--builtin --unified --percentage 0.2 --min_percentage 0.2 --interleave --warmup 0 --seed 42 --use_gpu --by_epoch
done
where the --percentage
and --min_percentage
represent the percentage to be kept, so 0.2
indicates drop 80% for an epoch. The --interleave
indicates to use a bar-like drop schedular.
- To train an efficient resnet50 with
0.2+0.2
mode (0.2 drop rate + 0.2 dropout), simply run
CUDA_VISIBLE_DEVICES=0 python train_classifier.py --exp runs/newdropout \
--task CIFAR100 --mode efficient --model resnet50 --drop_mode constant --bs 128 --epochs 1800 --lr 0.0002 \
--builtin --unified --percentage 0.6 --min_percentage 0.6 --interleave --warmup 0 --seed 42 --use_gpu --by_epoch --dropout 0.2
- To train an efficient ddpm with 0.4 drop rate, simply run
CUDA_VISIBLE_DEVICES=0 python train_ddpm.py --exp runs/generation --task FashionMNIST --mode efficient --model ddpm --drop_mode constant --epochs 500 --lr 0.001 --schedule cosine --builtin --unified --percentage 0.2 --min_percentage 0.2 --interleave --warmup 0
@article{zhong2024ssprop,
title={ssProp: Energy-Efficient Training for Convolutional Neural Networks with Scheduled Sparse Back Propagation},
author={Zhong, Lujia and Huang, Shuo and Shi, Yonggang},
journal={arXiv preprint arXiv:2408.12561},
year={2024}
}