-
Notifications
You must be signed in to change notification settings - Fork 37
/
ctx.rs
949 lines (893 loc) · 30.3 KB
/
ctx.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
//! Generic context-aware conversion traits, for automatic _downstream_ extension of `Pread`, et. al
//!
//! The context traits are arguably the center piece of the scroll crate. In simple terms they
//! define how to actually read and write, respectively, a data type from a container, being able to
//! take context into account.
//!
//! ### Reading
//!
//! Types implementing [TryFromCtx](trait.TryFromCtx.html) and it's infallible cousin [FromCtx](trait.FromCtx.html)
//! allow a user of [Pread::pread](../trait.Pread.html#method.pread) or respectively
//! [Cread::cread](../trait.Cread.html#method.cread) and
//! [IOread::ioread](../trait.IOread.html#method.ioread) to read that data type from a data source one
//! of the `*read` traits has been implemented for.
//!
//! Implementations of `TryFromCtx` specify a source (called `This`) and an `Error` type for failed
//! reads. The source defines the kind of container the type can be read from, and defaults to
//! `[u8]` for any type that implements `AsRef<[u8]>`.
//!
//! `FromCtx` is slightly more restricted; it requires the implementer to use `[u8]` as source and
//! never fail, and thus does not have an `Error` type.
//!
//! Types chosen here are of relevance to `Pread` implementations; of course only a container which
//! can produce a source of the type `This` can be used to read a `TryFromCtx` requiring it and the
//! `Error` type returned in `Err` of `Pread::pread`'s Result.
//!
//! ### Writing
//!
//! [TryIntoCtx](trait.TryIntoCtx.html) and the infallible [IntoCtx](trait.IntoCtx.html) work
//! similarly to the above traits, allowing [Pwrite::pwrite](../trait.Pwrite.html#method.pwrite) or
//! respectively [Cwrite::cwrite](../trait.Cwrite.html#method.cwrite) and
//! [IOwrite::iowrite](../trait.IOwrite.html#method.iowrite) to write data into a byte sink for
//! which one of the `*write` traits has been implemented for.
//!
//! `IntoCtx` is similarly restricted as `FromCtx` is to `TryFromCtx`. And equally the types chosen
//! affect usable `Pwrite` implementation.
//!
//! ### Context
//!
//! Each of the traits passes along a `Ctx` to the marshalling logic. This context type contains
//! any additional information that may be required to successfully parse or write the data:
//! Examples would be endianness to use, field lengths of a serialized struct, or delimiters to use
//! when reading/writing `&str`. The context type can be any type but must derive
//! [Copy](https://doc.rust-lang.org/std/marker/trait.Copy.html). In addition if you want to use
//! the `*read`-methods instead of the `*read_with` ones you must also implement
//! [default::Default](https://doc.rust-lang.org/std/default/trait.Default.html).
//!
//! # Example
//!
//! Let's expand on the [previous example](../index.html#complex-use-cases).
//!
//! ```rust
//! use scroll::{self, ctx, Pread, Endian};
//! use scroll::ctx::StrCtx;
//!
//! #[derive(Copy, Clone, PartialEq, Eq)]
//! enum FieldSize {
//! U32,
//! U64
//! }
//!
//! // Our custom context type. As said above it has to derive Copy.
//! #[derive(Copy, Clone)]
//! struct Context {
//! fieldsize: FieldSize,
//! endianess: Endian,
//! }
//!
//! // Our custom data type
//! struct Data<'b> {
//! // These u64 are encoded either as 32-bit or 64-bit wide ints. Which one it is is defined in
//! // the Context.
//! // Also, let's imagine they have a strict relationship: A < B < C otherwise the struct is
//! // invalid.
//! field_a: u64,
//! field_b: u64,
//! field_c: u64,
//!
//! // Both of these are marshalled with a prefixed length.
//! name: &'b str,
//! value: &'b [u8],
//! }
//!
//! #[derive(Debug)]
//! enum Error {
//! // We'll return this custom error if the field* relationship doesn't hold
//! BadFieldMatchup,
//! Scroll(scroll::Error),
//! }
//!
//! impl<'a> ctx::TryFromCtx<'a, Context> for Data<'a> {
//! type Error = Error;
//!
//! // Using the explicit lifetime specification again you ensure that read data doesn't outlife
//! // its source buffer without having to resort to copying.
//! fn try_from_ctx (src: &'a [u8], ctx: Context)
//! // the `usize` returned here is the amount of bytes read.
//! -> Result<(Self, usize), Self::Error>
//! {
//! // The offset counter; gread and gread_with increment a given counter automatically so we
//! // don't have to manually care.
//! let offset = &mut 0;
//!
//! let field_a;
//! let field_b;
//! let field_c;
//!
//! // Switch the amount of bytes read depending on the parsing context
//! if ctx.fieldsize == FieldSize::U32 {
//! field_a = src.gread_with::<u32>(offset, ctx.endianess)? as u64;
//! field_b = src.gread_with::<u32>(offset, ctx.endianess)? as u64;
//! field_c = src.gread_with::<u32>(offset, ctx.endianess)? as u64;
//! } else {
//! field_a = src.gread_with::<u64>(offset, ctx.endianess)?;
//! field_b = src.gread_with::<u64>(offset, ctx.endianess)?;
//! field_c = src.gread_with::<u64>(offset, ctx.endianess)?;
//! }
//!
//! // You can use type ascribition or turbofish operators, whichever you prefer.
//! let namelen = src.gread_with::<u16>(offset, ctx.endianess)? as usize;
//! let name: &str = src.gread_with(offset, scroll::ctx::StrCtx::Length(namelen))?;
//!
//! let vallen = src.gread_with::<u16>(offset, ctx.endianess)? as usize;
//! let value = &src[*offset..(*offset+vallen)];
//!
//! // Let's sanity check those fields, shall we?
//! if ! (field_a < field_b && field_b < field_c) {
//! return Err(Error::BadFieldMatchup);
//! }
//!
//! Ok((Data { field_a, field_b, field_c, name, value }, *offset))
//! }
//! }
//!
//! // In lieu of a complex byte buffer we hearken back to the venerable &[u8]; do note however
//! // that the implementation of TryFromCtx did not specify such. In fact any type that implements
//! // Pread can now read `Data` as it implements TryFromCtx.
//! let bytes = b"\x00\x02\x03\x04\x01\x02\x03\x04\xde\xad\xbe\xef\x00\x08UserName\x00\x02\xCA\xFE";
//!
//! // We define an appropiate context, and get going
//! let contextA = Context {
//! fieldsize: FieldSize::U32,
//! endianess: Endian::Big,
//! };
//! let data: Data = bytes.pread_with(0, contextA).unwrap();
//!
//! assert_eq!(data.field_a, 0x00020304);
//! assert_eq!(data.field_b, 0x01020304);
//! assert_eq!(data.field_c, 0xdeadbeef);
//! assert_eq!(data.name, "UserName");
//! assert_eq!(data.value, [0xCA, 0xFE]);
//!
//! // Here we have a context with a different FieldSize, changing parsing information at runtime.
//! let contextB = Context {
//! fieldsize: FieldSize::U64,
//! endianess: Endian::Big,
//! };
//!
//! // Which will of course error with a malformed input for the context
//! let err: Result<Data, Error> = bytes.pread_with(0, contextB);
//! assert!(err.is_err());
//!
//! let bytes_long = [0x00,0x00,0x00,0x00,0x00,0x02,0x03,0x04,0x00,0x00,0x00,0x00,0x01,0x02,0x03,
//! 0x04,0x00,0x00,0x00,0x00,0xde,0xad,0xbe,0xef,0x00,0x08,0x55,0x73,0x65,0x72,
//! 0x4e,0x61,0x6d,0x65,0x00,0x02,0xCA,0xFE];
//!
//! let data: Data = bytes_long.pread_with(0, contextB).unwrap();
//!
//! assert_eq!(data.field_a, 0x00020304);
//! assert_eq!(data.field_b, 0x01020304);
//! assert_eq!(data.field_c, 0xdeadbeef);
//! assert_eq!(data.name, "UserName");
//! assert_eq!(data.value, [0xCA, 0xFE]);
//!
//! // Ergonomic conversion, not relevant really.
//! use std::convert::From;
//! impl From<scroll::Error> for Error {
//! fn from(error: scroll::Error) -> Error {
//! Error::Scroll(error)
//! }
//! }
//! ```
use core::mem::{size_of, MaybeUninit};
use core::ptr::copy_nonoverlapping;
use core::{result, str};
#[cfg(feature = "std")]
use std::ffi::{CStr, CString};
use crate::endian::Endian;
use crate::{error, Pread, Pwrite};
/// A trait for measuring how large something is; for a byte sequence, it will be its length.
pub trait MeasureWith<Ctx> {
/// How large is `Self`, given the `ctx`?
fn measure_with(&self, ctx: &Ctx) -> usize;
}
impl<Ctx> MeasureWith<Ctx> for [u8] {
#[inline]
fn measure_with(&self, _ctx: &Ctx) -> usize {
self.len()
}
}
impl<Ctx, T: AsRef<[u8]>> MeasureWith<Ctx> for T {
#[inline]
fn measure_with(&self, _ctx: &Ctx) -> usize {
self.as_ref().len()
}
}
/// The parsing context for converting a byte sequence to a `&str`
///
/// `StrCtx` specifies what byte delimiter to use, and defaults to C-style null terminators. Be careful.
#[derive(Debug, Copy, Clone)]
pub enum StrCtx {
Delimiter(u8),
DelimiterUntil(u8, usize),
Length(usize),
}
/// A C-style, null terminator based delimiter
pub const NULL: u8 = 0;
/// A space-based delimiter
pub const SPACE: u8 = 0x20;
/// A newline-based delimiter
pub const RET: u8 = 0x0a;
/// A tab-based delimiter
pub const TAB: u8 = 0x09;
impl Default for StrCtx {
#[inline]
fn default() -> Self {
StrCtx::Delimiter(NULL)
}
}
impl StrCtx {
pub fn len(&self) -> usize {
match self {
StrCtx::Delimiter(_) | StrCtx::DelimiterUntil(_, _) => 1,
StrCtx::Length(_) => 0,
}
}
pub fn is_empty(&self) -> bool {
matches!(self, StrCtx::Length(_))
}
}
/// Reads `Self` from `This` using the context `Ctx`; must _not_ fail
pub trait FromCtx<Ctx: Copy = (), This: ?Sized = [u8]> {
fn from_ctx(this: &This, ctx: Ctx) -> Self;
}
/// Tries to read `Self` from `This` using the context `Ctx`
///
/// # Implementing Your Own Reader
/// If you want to implement your own reader for a type `Foo` from some kind of buffer (say
/// `[u8]`), then you need to implement this trait
///
/// ```rust
/// ##[cfg(feature = "std")] {
/// use scroll::{self, ctx, Pread};
/// #[derive(Debug, PartialEq, Eq)]
/// pub struct Foo(u16);
///
/// impl<'a> ctx::TryFromCtx<'a, scroll::Endian> for Foo {
/// type Error = scroll::Error;
/// fn try_from_ctx(this: &'a [u8], le: scroll::Endian) -> Result<(Self, usize), Self::Error> {
/// if this.len() < 2 { return Err((scroll::Error::Custom("whatever".to_string())).into()) }
/// let n = this.pread_with(0, le)?;
/// Ok((Foo(n), 2))
/// }
/// }
///
/// let bytes: [u8; 4] = [0xde, 0xad, 0, 0];
/// let foo = bytes.pread_with::<Foo>(0, scroll::LE).unwrap();
/// assert_eq!(Foo(0xadde), foo);
///
/// let foo2 = bytes.pread_with::<Foo>(0, scroll::BE).unwrap();
/// assert_eq!(Foo(0xdeadu16), foo2);
/// # }
/// ```
///
/// # Advanced: Using Your Own Error in `TryFromCtx`
/// ```rust
/// use scroll::{self, ctx, Pread};
/// use std::error;
/// use std::fmt::{self, Display};
/// // make some kind of normal error which also can transformed from a scroll error
/// #[derive(Debug)]
/// pub struct ExternalError {}
///
/// impl Display for ExternalError {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// write!(fmt, "ExternalError")
/// }
/// }
///
/// impl error::Error for ExternalError {
/// fn description(&self) -> &str {
/// "ExternalError"
/// }
/// fn cause(&self) -> Option<&dyn error::Error> { None}
/// }
///
/// impl From<scroll::Error> for ExternalError {
/// fn from(err: scroll::Error) -> Self {
/// match err {
/// _ => ExternalError{},
/// }
/// }
/// }
/// #[derive(Debug, PartialEq, Eq)]
/// pub struct Foo(u16);
///
/// impl<'a> ctx::TryFromCtx<'a, scroll::Endian> for Foo {
/// type Error = ExternalError;
/// fn try_from_ctx(this: &'a [u8], le: scroll::Endian) -> Result<(Self, usize), Self::Error> {
/// if this.len() <= 2 { return Err((ExternalError {}).into()) }
/// let offset = &mut 0;
/// let n = this.gread_with(offset, le)?;
/// Ok((Foo(n), *offset))
/// }
/// }
///
/// let bytes: [u8; 4] = [0xde, 0xad, 0, 0];
/// let foo: Result<Foo, ExternalError> = bytes.pread(0);
/// ```
pub trait TryFromCtx<'a, Ctx: Copy = (), This: ?Sized = [u8]>
where
Self: 'a + Sized,
{
type Error;
fn try_from_ctx(from: &'a This, ctx: Ctx) -> Result<(Self, usize), Self::Error>;
}
/// Writes `Self` into `This` using the context `Ctx`
pub trait IntoCtx<Ctx: Copy = (), This: ?Sized = [u8]>: Sized {
fn into_ctx(self, _: &mut This, ctx: Ctx);
}
/// Tries to write `Self` into `This` using the context `Ctx`
/// To implement writing into an arbitrary byte buffer, implement `TryIntoCtx`
/// # Example
/// ```rust
/// ##[cfg(feature = "std")] {
/// use scroll::{self, ctx, LE, Endian, Pwrite};
/// #[derive(Debug, PartialEq, Eq)]
/// pub struct Foo(u16);
///
/// // this will use the default `DefaultCtx = scroll::Endian`
/// impl ctx::TryIntoCtx<Endian> for Foo {
/// // you can use your own error here too, but you will then need to specify it in fn generic parameters
/// type Error = scroll::Error;
/// // you can write using your own context type, see `leb128.rs`
/// fn try_into_ctx(self, this: &mut [u8], le: Endian) -> Result<usize, Self::Error> {
/// if this.len() < 2 { return Err((scroll::Error::Custom("whatever".to_string())).into()) }
/// this.pwrite_with(self.0, 0, le)?;
/// Ok(2)
/// }
/// }
/// // now we can write a `Foo` into some buffer (in this case, a byte buffer, because that's what we implemented it for above)
///
/// let mut bytes: [u8; 4] = [0, 0, 0, 0];
/// bytes.pwrite_with(Foo(0x7f), 1, LE).unwrap();
/// # }
/// ```
pub trait TryIntoCtx<Ctx: Copy = (), This: ?Sized = [u8]>: Sized {
type Error;
fn try_into_ctx(self, _: &mut This, ctx: Ctx) -> Result<usize, Self::Error>;
}
/// Gets the size of `Self` with a `Ctx`, and in `Self::Units`. Implementors can then call `Gread` related functions
///
/// The rationale behind this trait is to:
///
/// 1. Prevent `gread` from being used, and the offset being modified based on simply the sizeof the value, which can be a misnomer, e.g., for Leb128, etc.
/// 2. Allow a context based size, which is useful for 32/64 bit variants for various containers, etc.
pub trait SizeWith<Ctx = ()> {
fn size_with(ctx: &Ctx) -> usize;
}
#[rustfmt::skip]
macro_rules! signed_to_unsigned {
(i8) => {u8 };
(u8) => {u8 };
(i16) => {u16};
(u16) => {u16};
(i32) => {u32};
(u32) => {u32};
(i64) => {u64};
(u64) => {u64};
(i128) => {u128};
(u128) => {u128};
(f32) => {u32};
(f64) => {u64};
}
macro_rules! write_into {
($typ:ty, $size:expr, $n:expr, $dst:expr, $endian:expr) => {{
assert!($dst.len() >= $size);
let bytes = if $endian.is_little() {
$n.to_le()
} else {
$n.to_be()
}
.to_ne_bytes();
unsafe {
copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size);
}
}};
}
macro_rules! into_ctx_impl {
($typ:tt, $size:expr) => {
impl IntoCtx<Endian> for $typ {
#[inline]
fn into_ctx(self, dst: &mut [u8], le: Endian) {
assert!(dst.len() >= $size);
write_into!($typ, $size, self, dst, le);
}
}
impl<'a> IntoCtx<Endian> for &'a $typ {
#[inline]
fn into_ctx(self, dst: &mut [u8], le: Endian) {
(*self).into_ctx(dst, le)
}
}
impl TryIntoCtx<Endian> for $typ
where
$typ: IntoCtx<Endian>,
{
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result<usize> {
if $size > dst.len() {
Err(error::Error::TooBig {
size: $size,
len: dst.len(),
})
} else {
<$typ as IntoCtx<Endian>>::into_ctx(self, dst, le);
Ok($size)
}
}
}
impl<'a> TryIntoCtx<Endian> for &'a $typ {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result<usize> {
(*self).try_into_ctx(dst, le)
}
}
};
}
macro_rules! from_ctx_impl {
($typ:tt, $size:expr) => {
impl<'a> FromCtx<Endian> for $typ {
#[inline]
fn from_ctx(src: &[u8], le: Endian) -> Self {
assert!(src.len() >= $size);
let mut data: signed_to_unsigned!($typ) = 0;
unsafe {
copy_nonoverlapping(
src.as_ptr(),
&mut data as *mut signed_to_unsigned!($typ) as *mut u8,
$size,
);
}
(if le.is_little() {
data.to_le()
} else {
data.to_be()
}) as $typ
}
}
impl<'a> TryFromCtx<'a, Endian> for $typ
where
$typ: FromCtx<Endian>,
{
type Error = error::Error;
#[inline]
fn try_from_ctx(
src: &'a [u8],
le: Endian,
) -> result::Result<(Self, usize), Self::Error> {
if $size > src.len() {
Err(error::Error::TooBig {
size: $size,
len: src.len(),
})
} else {
Ok((FromCtx::from_ctx(&src, le), $size))
}
}
}
// as ref
impl<'a, T> FromCtx<Endian, T> for $typ
where
T: AsRef<[u8]>,
{
#[inline]
fn from_ctx(src: &T, le: Endian) -> Self {
let src = src.as_ref();
assert!(src.len() >= $size);
let mut data: signed_to_unsigned!($typ) = 0;
unsafe {
copy_nonoverlapping(
src.as_ptr(),
&mut data as *mut signed_to_unsigned!($typ) as *mut u8,
$size,
);
}
(if le.is_little() {
data.to_le()
} else {
data.to_be()
}) as $typ
}
}
impl<'a, T> TryFromCtx<'a, Endian, T> for $typ
where
$typ: FromCtx<Endian, T>,
T: AsRef<[u8]>,
{
type Error = error::Error;
#[inline]
fn try_from_ctx(src: &'a T, le: Endian) -> result::Result<(Self, usize), Self::Error> {
let src = src.as_ref();
Self::try_from_ctx(src, le)
}
}
};
}
macro_rules! ctx_impl {
($typ:tt, $size:expr) => {
from_ctx_impl!($typ, $size);
};
}
ctx_impl!(u8, 1);
ctx_impl!(i8, 1);
ctx_impl!(u16, 2);
ctx_impl!(i16, 2);
ctx_impl!(u32, 4);
ctx_impl!(i32, 4);
ctx_impl!(u64, 8);
ctx_impl!(i64, 8);
ctx_impl!(u128, 16);
ctx_impl!(i128, 16);
macro_rules! from_ctx_float_impl {
($typ:tt, $size:expr) => {
impl<'a> FromCtx<Endian> for $typ {
#[inline]
fn from_ctx(src: &[u8], le: Endian) -> Self {
assert!(src.len() >= ::core::mem::size_of::<Self>());
let mut data: signed_to_unsigned!($typ) = 0;
unsafe {
copy_nonoverlapping(
src.as_ptr(),
&mut data as *mut signed_to_unsigned!($typ) as *mut u8,
$size,
);
}
$typ::from_bits(if le.is_little() {
data.to_le()
} else {
data.to_be()
})
}
}
impl<'a> TryFromCtx<'a, Endian> for $typ
where
$typ: FromCtx<Endian>,
{
type Error = error::Error;
#[inline]
fn try_from_ctx(
src: &'a [u8],
le: Endian,
) -> result::Result<(Self, usize), Self::Error> {
if $size > src.len() {
Err(error::Error::TooBig {
size: $size,
len: src.len(),
})
} else {
Ok((FromCtx::from_ctx(src, le), $size))
}
}
}
};
}
from_ctx_float_impl!(f32, 4);
from_ctx_float_impl!(f64, 8);
into_ctx_impl!(u8, 1);
into_ctx_impl!(i8, 1);
into_ctx_impl!(u16, 2);
into_ctx_impl!(i16, 2);
into_ctx_impl!(u32, 4);
into_ctx_impl!(i32, 4);
into_ctx_impl!(u64, 8);
into_ctx_impl!(i64, 8);
into_ctx_impl!(u128, 16);
into_ctx_impl!(i128, 16);
macro_rules! into_ctx_float_impl {
($typ:tt, $size:expr) => {
impl IntoCtx<Endian> for $typ {
#[inline]
fn into_ctx(self, dst: &mut [u8], le: Endian) {
assert!(dst.len() >= $size);
write_into!(signed_to_unsigned!($typ), $size, self.to_bits(), dst, le);
}
}
impl<'a> IntoCtx<Endian> for &'a $typ {
#[inline]
fn into_ctx(self, dst: &mut [u8], le: Endian) {
(*self).into_ctx(dst, le)
}
}
impl TryIntoCtx<Endian> for $typ
where
$typ: IntoCtx<Endian>,
{
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result<usize> {
if $size > dst.len() {
Err(error::Error::TooBig {
size: $size,
len: dst.len(),
})
} else {
<$typ as IntoCtx<Endian>>::into_ctx(self, dst, le);
Ok($size)
}
}
}
impl<'a> TryIntoCtx<Endian> for &'a $typ {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result<usize> {
(*self).try_into_ctx(dst, le)
}
}
};
}
into_ctx_float_impl!(f32, 4);
into_ctx_float_impl!(f64, 8);
impl<'a> TryFromCtx<'a, StrCtx> for &'a str {
type Error = error::Error;
#[inline]
/// Read a `&str` from `src` using `delimiter`
fn try_from_ctx(src: &'a [u8], ctx: StrCtx) -> Result<(Self, usize), Self::Error> {
let len = match ctx {
StrCtx::Length(len) => len,
StrCtx::Delimiter(delimiter) => src.iter().take_while(|c| **c != delimiter).count(),
StrCtx::DelimiterUntil(delimiter, len) => {
if len > src.len() {
return Err(error::Error::TooBig {
size: len,
len: src.len(),
});
};
src.iter()
.take_while(|c| **c != delimiter)
.take(len)
.count()
}
};
if len > src.len() {
return Err(error::Error::TooBig {
size: len,
len: src.len(),
});
};
match str::from_utf8(&src[..len]) {
Ok(res) => Ok((res, len + ctx.len())),
Err(_) => Err(error::Error::BadInput {
size: src.len(),
msg: "invalid utf8",
}),
}
}
}
impl<'a, T> TryFromCtx<'a, StrCtx, T> for &'a str
where
T: AsRef<[u8]>,
{
type Error = error::Error;
#[inline]
fn try_from_ctx(src: &'a T, ctx: StrCtx) -> result::Result<(Self, usize), Self::Error> {
let src = src.as_ref();
TryFromCtx::try_from_ctx(src, ctx)
}
}
impl<'a> TryIntoCtx for &'a [u8] {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result<usize> {
let src_len = self.len() as isize;
let dst_len = dst.len() as isize;
// if src_len < 0 || dst_len < 0 || offset < 0 {
// return Err(error::Error::BadOffset(format!("requested operation has negative casts: src len: {src_len} dst len: {dst_len} offset: {offset}")).into())
// }
if src_len > dst_len {
Err(error::Error::TooBig {
size: self.len(),
len: dst.len(),
})
} else {
unsafe { copy_nonoverlapping(self.as_ptr(), dst.as_mut_ptr(), src_len as usize) };
Ok(self.len())
}
}
}
// TODO: make TryIntoCtx use StrCtx for awesomeness
impl<'a> TryIntoCtx for &'a str {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result<usize> {
let bytes = self.as_bytes();
TryIntoCtx::try_into_ctx(bytes, dst, ())
}
}
// TODO: we can make this compile time without size_of call, but compiler probably does that anyway
macro_rules! sizeof_impl {
($ty:ty) => {
impl SizeWith<Endian> for $ty {
#[inline]
fn size_with(_ctx: &Endian) -> usize {
size_of::<$ty>()
}
}
impl SizeWith for $ty {
#[inline]
fn size_with(_ctx: &()) -> usize {
size_of::<$ty>()
}
}
};
}
sizeof_impl!(u8);
sizeof_impl!(i8);
sizeof_impl!(u16);
sizeof_impl!(i16);
sizeof_impl!(u32);
sizeof_impl!(i32);
sizeof_impl!(u64);
sizeof_impl!(i64);
sizeof_impl!(u128);
sizeof_impl!(i128);
sizeof_impl!(f32);
sizeof_impl!(f64);
impl<'a> TryFromCtx<'a, usize> for &'a [u8] {
type Error = error::Error;
#[inline]
fn try_from_ctx(src: &'a [u8], size: usize) -> result::Result<(Self, usize), Self::Error> {
if size > src.len() {
Err(error::Error::TooBig {
size,
len: src.len(),
})
} else {
Ok((&src[..size], size))
}
}
}
impl<'a, Ctx: Copy, T: TryFromCtx<'a, Ctx, Error = error::Error>, const N: usize>
TryFromCtx<'a, Ctx> for [T; N]
{
type Error = error::Error;
fn try_from_ctx(src: &'a [u8], ctx: Ctx) -> Result<(Self, usize), Self::Error> {
let mut offset = 0;
let mut buf: [MaybeUninit<T>; N] = core::array::from_fn(|_| MaybeUninit::uninit());
let mut error_ctx = None;
for (idx, element) in buf.iter_mut().enumerate() {
match src.gread_with::<T>(&mut offset, ctx) {
Ok(val) => {
*element = MaybeUninit::new(val);
}
Err(e) => {
error_ctx = Some((e, idx));
break;
}
}
}
if let Some((e, idx)) = error_ctx {
for element in &mut buf[0..idx].iter_mut() {
// SAFETY: Any element upto idx must have already been initialized, since
// we iterate until we encounter an error.
unsafe {
element.assume_init_drop();
}
}
Err(e)
} else {
// SAFETY: we initialized each element above by preading them out, correctness
// of the initialized element is guaranted by pread itself
Ok((buf.map(|element| unsafe { element.assume_init() }), offset))
}
}
}
impl<Ctx: Copy, T: TryIntoCtx<Ctx, Error = error::Error>, const N: usize> TryIntoCtx<Ctx>
for [T; N]
{
type Error = error::Error;
fn try_into_ctx(self, buf: &mut [u8], ctx: Ctx) -> Result<usize, Self::Error> {
let mut offset = 0;
for element in self {
buf.gwrite_with(element, &mut offset, ctx)?;
}
Ok(offset)
}
}
impl<Ctx, T: SizeWith<Ctx>, const N: usize> SizeWith<Ctx> for [T; N] {
fn size_with(ctx: &Ctx) -> usize {
T::size_with(ctx) * N
}
}
#[cfg(feature = "std")]
impl<'a> TryFromCtx<'a> for &'a CStr {
type Error = error::Error;
#[inline]
fn try_from_ctx(src: &'a [u8], _ctx: ()) -> result::Result<(Self, usize), Self::Error> {
let null_byte = match src.iter().position(|b| *b == 0) {
Some(ix) => ix,
None => {
return Err(error::Error::BadInput {
size: 0,
msg: "The input doesn't contain a null byte",
})
}
};
let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(&src[..=null_byte]) };
Ok((cstr, null_byte + 1))
}
}
#[cfg(feature = "std")]
impl<'a> TryFromCtx<'a> for CString {
type Error = error::Error;
#[inline]
fn try_from_ctx(src: &'a [u8], _ctx: ()) -> result::Result<(Self, usize), Self::Error> {
let (raw, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(src, _ctx)?;
Ok((raw.to_owned(), bytes_read))
}
}
#[cfg(feature = "std")]
impl<'a> TryIntoCtx for &'a CStr {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result<usize> {
let data = self.to_bytes_with_nul();
if dst.len() < data.len() {
Err(error::Error::TooBig {
size: dst.len(),
len: data.len(),
})
} else {
unsafe {
copy_nonoverlapping(data.as_ptr(), dst.as_mut_ptr(), data.len());
}
Ok(data.len())
}
}
}
#[cfg(feature = "std")]
impl TryIntoCtx for CString {
type Error = error::Error;
#[inline]
fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result<usize> {
self.as_c_str().try_into_ctx(dst, ())
}
}
// example of marshalling to bytes, let's wait until const is an option
// impl FromCtx for [u8; 10] {
// fn from_ctx(bytes: &[u8], _ctx: Endian) -> Self {
// let mut dst: Self = [0; 10];
// assert!(bytes.len() >= dst.len());
// unsafe {
// copy_nonoverlapping(bytes.as_ptr(), dst.as_mut_ptr(), dst.len());
// }
// dst
// }
// }
#[cfg(test)]
#[cfg(feature = "std")]
mod tests {
use super::*;
#[test]
fn parse_a_cstr() {
let src = CString::new("Hello World").unwrap();
let as_bytes = src.as_bytes_with_nul();
let (got, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(as_bytes, ()).unwrap();
assert_eq!(bytes_read, as_bytes.len());
assert_eq!(got, src.as_c_str());
}
#[test]
fn round_trip_a_c_str() {
let src = CString::new("Hello World").unwrap();
let src = src.as_c_str();
let as_bytes = src.to_bytes_with_nul();
let mut buffer = vec![0; as_bytes.len()];
let bytes_written = src.try_into_ctx(&mut buffer, ()).unwrap();
assert_eq!(bytes_written, as_bytes.len());
let (got, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(&buffer, ()).unwrap();
assert_eq!(bytes_read, as_bytes.len());
assert_eq!(got, src);
}
}