forked from jph00/part2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vgg16_avg.py
125 lines (110 loc) · 6.2 KB
/
vgg16_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from __future__ import print_function
from __future__ import absolute_import
import warnings
from keras.models import Model
from keras.layers import Flatten, Dense, Input
from keras.layers import Convolution2D, AveragePooling2D
from keras.engine.topology import get_source_inputs
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions, preprocess_input, _obtain_input_shape
TH_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels.h5'
TF_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
TH_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels_notop.h5'
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
def VGG16_Avg(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None,
classes=1000):
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=48,
dim_ordering=K.image_dim_ordering(),
include_top=include_top)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='block1_conv1')(img_input)
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='block1_conv2')(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='block2_conv1')(x)
x = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='block2_conv2')(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv1')(x)
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv2')(x)
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv3')(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv1')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv2')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv3')(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv1')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv2')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv3')(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
if include_top:
# Classification block
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
x = Dense(classes, activation='softmax', name='predictions')(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='vgg16')
# load weights
if weights == 'imagenet':
if K.image_dim_ordering() == 'th':
if include_top:
weights_path = get_file('vgg16_weights_th_dim_ordering_th_kernels.h5',
TH_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('vgg16_weights_th_dim_ordering_th_kernels_notop.h5',
TH_WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
model.load_weights(weights_path)
if K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image dimension ordering convention '
'(`image_dim_ordering="th"`). '
'For best performance, set '
'`image_dim_ordering="tf"` in '
'your Keras config '
'at ~/.keras/keras.json.')
convert_all_kernels_in_model(model)
else:
if include_top:
weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
TF_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
model.load_weights(weights_path)
if K.backend() == 'theano':
convert_all_kernels_in_model(model)
return model