forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModularLinearAlgebra.java
150 lines (136 loc) · 4.34 KB
/
ModularLinearAlgebra.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/** Solve a system of linear equations in a finite field Time Complexity: O(r^2c) */
package com.williamfiset.algorithms.linearalgebra;
class ModularLinearAlgebra {
// Takes an augmented matrix as input along with a prime
// number as the order of the finite field on which the
// calculations are being performed. The inv[] array is
// the multiplicative inverse of each element in this
// finite field. After running this method, the input
// matrix arr[] will be in reduced row echelon form
// Time Complexity: O(r^2c)
static void rref(int[][] arr, int prime, int[] inv) {
int n = arr.length, m = arr[0].length;
int r = 0;
for (int i = 0; i < m - 1 && r < n; i++) {
if (arr[r][i] == 0) {
for (int k = r + 1; k < n; k++) {
if (arr[k][i] != 0) {
int[] t = arr[r];
arr[r] = arr[k];
arr[k] = t;
break;
}
}
}
if (arr[r][i] == 0) {
continue;
}
int inverse = inv[arr[r][i]];
for (int k = i; k < m; k++) arr[r][k] = (arr[r][k] * inverse) % prime;
for (int j = 0; j < n; j++) {
int c = arr[j][i];
if (j == r || c == 0) continue;
arr[j][i] = 0;
for (int k = i + 1; k < m; k++) arr[j][k] = (arr[j][k] - c * arr[r][k] + c * prime) % prime;
}
r++;
}
}
// Finds the inverse of a non-augmented matrix in the finite field
// with order equal to the given prime.
static int[][] inverse(int[][] arr, int prime, int[] modInv) {
if (arr.length != arr[0].length) return null;
int n = arr.length;
int[][] augmented = new int[n][n * 2];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
augmented[i][j] = arr[i][j];
}
augmented[i][i + n] = 1;
}
rref(augmented, prime, modInv);
int[][] inv = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j && augmented[i][j] != 1) return null;
else if (augmented[i][j] != 0) return null;
inv[i][j] = augmented[i][j + n];
}
}
return inv;
}
// To be checked after the augmented matrix has been
// row reduced to reduced row echelon form
static boolean isInconsistent(int[][] arr) {
int nCols = arr[0].length;
outer:
for (int y = 0; y < arr.length; y++) {
if (arr[y][nCols - 1] != 0) {
for (int x = 0; x < nCols - 1; x++) {
if (arr[y][x] != 0) continue outer;
}
return true;
}
}
return false;
}
// To be checked after the augmented matrix has been
// row reduced to reduced row echelon form and checked
// for consistency
static boolean hasMultipleSolutions(int[][] arr) {
int nCols = arr[0].length;
int nEmptyRows = 0;
outer:
for (int y = 0; y < arr.length; y++) {
for (int x = 0; x < nCols; x++) {
if (arr[y][x] != 0) continue outer;
}
nEmptyRows++;
}
return nCols - 1 > arr.length - nEmptyRows;
}
// Returns {gcd(a,b), x, y} such that ax+by=gcd(a,b)
static int[] egcd(int a, int b) {
if (b == 0) return new int[] {a, 1, 0};
int[] ret = egcd(b, a % b);
int tmp = ret[1] - ret[2] * (a / b);
ret[1] = ret[2];
ret[2] = tmp;
return ret;
}
// Returns the inverse of x mod m
static int modInv(int x, int m) {
return (egcd(x, m)[1] + m) % m;
}
public static void main(String[] args) {
// Suppose we want to solve the following system for
// the variables x, y, z, in Z_7:
//
// 5x + y - z = 0
// 3x + 0y + 4z = 1
// x - 2y + 2z = 4
// Then we would setup the following augment matrix:
int p = 7;
int[][] augmentedMatrix = {
{5, 1, 6, 0},
{3, 0, 4, 1},
{1, 5, 2, 4}
};
// Note that negative values have been changed to their
// corresponding values in Z_p
// Compute the multiplicative inverse for each element in Z_p
int[] inv = new int[p];
for (int i = 1; i < p; i++) {
inv[i] = modInv(i, p);
}
// Put the matrix in reduced row echelon form
rref(augmentedMatrix, p, inv);
if (!isInconsistent(augmentedMatrix) && !hasMultipleSolutions(augmentedMatrix)) {
int x = augmentedMatrix[0][3];
int y = augmentedMatrix[1][3];
int z = augmentedMatrix[2][3];
// Prints: x = 1, y = 5, z = 3
System.out.printf("x = %d, y = %d, z = %d\n", x, y, z);
}
}
}