-
-
Notifications
You must be signed in to change notification settings - Fork 69
/
sx126x.cpp
1003 lines (803 loc) · 22.9 KB
/
sx126x.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2024 by Mark Qvist
// Obviously still under the MIT license.
#include "Boards.h"
#if MODEM == SX1262
#include "sx126x.h"
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_6X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CAD_PARAMS 0x88
#define OP_CALIBRATE_6X 0x89
#define OP_RX_TX_FALLBACK_MODE_6X 0x93
#define OP_REGULATOR_MODE_6X 0x96
#define OP_CALIBRATE_IMAGE_6X 0x98
#define MASK_CALIBRATE_ALL 0x7f
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define IRQ_ALL_MASK_6X 0b0100001111111111
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // no agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define MODE_TCXO_3_0V_6X 0x06
#define MODE_TCXO_2_7V_6X 0x06
#define MODE_TCXO_2_4V_6X 0x06
#define MODE_TCXO_2_2V_6X 0x03
#define MODE_TCXO_1_8V_6X 0x02
#define MODE_TCXO_1_7V_6X 0x01
#define MODE_TCXO_1_6V_6X 0x00
#define MODE_STDBY_RC_6X 0x00
#define MODE_STDBY_XOSC_6X 0x01
#define MODE_FALLBACK_STDBY_RC_6X 0x20
#define MODE_IMPLICIT_HEADER 0x01
#define MODE_EXPLICIT_HEADER 0x00
#define SYNC_WORD_6X 0x1424
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
#if defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx126x::sx126x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN),
_frequency(0),
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(1),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_RNODE_NG_22 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#else
SPI.begin();
#endif
// check version (retry for up to 2 seconds)
// TODO: Actually read version registers, not syncwords
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) {
SPI.transfer(0x00);
}
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable()
{
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx126x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_6X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_6X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
// low data rate toggle
buf[3] = ldro;
// unused params in LoRa mode
buf[4] = 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble & 0xFF00) >> 8);
buf[1] = uint8_t((preamble & 0x00FF));
buf[2] = headermode;
buf[3] = length;
buf[4] = crc;
// standard IQ setting (no inversion)
buf[5] = 0x00;
// unused params
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
void sx126x::reset(void) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
void sx126x::calibrate(void) {
// Put in STDBY_RC mode before calibration
uint8_t mode_byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &mode_byte, 1);
// calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = MASK_CALIBRATE_ALL;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
delay(5);
waitOnBusy();
}
void sx126x::calibrate_image(long frequency) {
uint8_t image_freq[2] = {0};
if (frequency >= 430E6 && frequency <= 440E6) {
image_freq[0] = 0x6B;
image_freq[1] = 0x6F;
}
else if (frequency >= 470E6 && frequency <= 510E6) {
image_freq[0] = 0x75;
image_freq[1] = 0x81;
}
else if (frequency >= 779E6 && frequency <= 787E6) {
image_freq[0] = 0xC1;
image_freq[1] = 0xC5;
}
else if (frequency >= 863E6 && frequency <= 870E6) {
image_freq[0] = 0xD7;
image_freq[1] = 0xDB;
}
else if (frequency >= 902E6 && frequency <= 928E6) {
image_freq[0] = 0xE1;
image_freq[1] = 0xE9;
}
executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2);
waitOnBusy();
}
int sx126x::begin(long frequency)
{
reset();
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
}
calibrate();
calibrate_image(frequency);
enableTCXO();
loraMode();
standby();
// Set sync word
setSyncWord(SYNC_WORD_6X);
#if DIO2_AS_RF_SWITCH
// enable dio2 rf switch
uint8_t byte = 0x01;
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
#endif
rxAntEnable();
setFrequency(frequency);
// set output power to 2 dBm
setTxPower(2);
enableCrc();
// set LNA boost
writeRegister(REG_LNA_6X, 0x96);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
void sx126x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx126x::beginPacket(int implicitHeader)
{
standby();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
bool timed_out = false;
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
// wait for TX done
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0)) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
if (!(millis() < w_timeout)) { timed_out = true; }
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
if (timed_out) {
return 0;
} else {
return 1;
}
}
uint8_t sx126x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
}
if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) {
byte = byte | 0x02 | 0x04;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
return byte;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
int ISR_VECT sx126x::packetRssi(uint8_t pkt_snr_raw) {
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError()
{
// todo: implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx126x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available()
{
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush()
{
}
void sx126x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_6X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
if (_rxen != -1) {
rxAntEnable();
}
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::standby()
{
// STDBY_XOSC
uint8_t byte = MODE_STDBY_XOSC_6X;
// STDBY_RC
// uint8_t byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_6X, &byte, 1);
}
void sx126x::enableTCXO() {
#if HAS_TCXO
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TDECK
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_RNODE_NG_22
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#endif
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
#endif
}
// TODO: Once enabled, SX1262 needs a complete reset to disable TCXO
void sx126x::disableTCXO() { }
void sx126x::setTxPower(int level, int outputPin) {
// currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs
pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262
pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261)
pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet)
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) { level = 22; }
else if (level < -9) { level = -9; }
writeRegister(REG_OCP_6X, OCP_TUNED); // Use board-specific tuned OCP
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // PA ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
_txp = level;
}
uint8_t sx126x::getTxPower() {
return _txp;
}
void sx126x::setFrequency(long frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// we can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf;
handleLowDataRate();
setModulationParams(sf, _bw, _cr, _ldro);
}
long sx126x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
void sx126x::handleLowDataRate(){
if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16) {
_ldro = 0x01;
} else {
_ldro = 0x00;
}
}
void sx126x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1262 can do here
}
void sx126x::setSignalBandwidth(long sbw)
{
if (sbw <= 7.8E3) {
_bw = 0x00;
} else if (sbw <= 10.4E3) {
_bw = 0x08;
} else if (sbw <= 15.6E3) {
_bw = 0x01;
} else if (sbw <= 20.8E3) {
_bw = 0x09;
} else if (sbw <= 31.25E3) {
_bw = 0x02;
} else if (sbw <= 41.7E3) {
_bw = 0x0A;
} else if (sbw <= 62.5E3) {
_bw = 0x03;
} else if (sbw <= 125E3) {
_bw = 0x04;
} else if (sbw <= 250E3) {
_bw = 0x05;
} else /*if (sbw <= 250E3)*/ {
_bw = 0x06;
}
handleLowDataRate();
setModulationParams(_sf, _bw, _cr, _ldro);
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
void sx126x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(uint16_t sw)
{
// TODO: Fix
// writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8);
// writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
writeRegister(REG_SYNC_WORD_MSB_6X, 0x14);
writeRegister(REG_SYNC_WORD_LSB_6X, 0x24);
}
void sx126x::enableCrc()
{
_crcMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx126x::random()
{
return readRegister(REG_RANDOM_GEN_6X);
}
void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
}
void sx126x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx126x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx126x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::implicitHeaderMode()
{
_implicitHeaderMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx126x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) {
_onReceive(packetLength);
}
}
}
void ISR_VECT sx126x::onDio0Rise()
{
sx126x_modem.handleDio0Rise();
}