-
Formal Release 正式版
- 1.0.0 (2024-11-25): Release to moda 交付給數發部
- Fix critical and urgent issues.
- Close all issues and pull requests.
- Clean up temporary files from development.
- 解決必要且急迫的問題。
- 關閉 issue 與 PR。
- 清理開發過程中暫存臨時檔。
- 1.0.0 (2024-11-25): Release to moda 交付給數發部
-
Beta testing 外部測試階段
- 0.12.0 (2024-05-16): Feasibility study-4 適用性研究之四
- Introduced Stats for new evaluating framework.
- Introduced MissingMode for new MissingHandler.
- Continue refining and debugging.
- 引入新評測架構 Stats。
- 引入新遺失值處理模組 MissingMode。
- 持續優化與除錯。
- 0.11.0 (2024-05-02): Feasibility study-3 適用性研究之三
- Introduced MLUtility for new ML evaluating framework.
- Continue refining and debugging.
- 引入新機器學習評測架構 MLUtility。
- 持續優化與除錯。
- 0.10.0 (2024-04-12): Feasibility study-2 適用性研究之二
- Refine the functions and fix the bugs in PETsARD.
- Enhance the readability of YAML page in the user guide.
- 改善 PETsARD 中的模組功能與除錯,以解決實驗過程中遇到的問題。
- 改善使用手冊的易讀性。
- 0.9.0 (2024-04-01): Feasibility study-1 適用性研究之一
- Enhancing the downstream tasks of autoML as evaluation metrics and improving report generation functionality, addressing issues encountered during experiments.
- Completed the development of the user guide and started seeking external testing.
- 強化了autoML的下游任務作為評測標準,並改善報表生成功能,解決實驗過程中遇到的問題。
- 完成了使用手冊的開發,開始尋求外部測試。
- 0.8.0 (2024-03-14): Start Beta testing 外部測試開始
- Provide a deeper description of YAML configurations and user stories in the new manual website. Also, address the issues encountered in functional testing across multiple modules.
- DPCTGAN, PATEGAN in smartnoise can be accessed in
Synthesizer
now. Besides, the execution error from aim, mst, and pacsynth are fixed. - 在新手冊網站上對 YAML 設定、以及用戶故事有更深入的描述。並解決多個模組在功能測試上遇到的問題。
- smartnoise 的 DPCTGAN, PATEGAN 可以於
Synthesizer
中使用,並修正 aim、mst、pacsynth 執行過程中的錯誤。
- 0.7.0 (2024-03-01): User Story completed 用戶故事完成
- Two new modules have been added:
Describer
andReporter
. AlsoExecutor
, which can fully execute procedures according to YAML, is included, ensuring that all user stories in the spec are executed correctly. - 新增三個模組:
Describer
、Reporter
、以及能按照 YAML 完整執行流程的Executor
,以此確保規格說明書中所有的用戶故事都能正確執行。
- Two new modules have been added:
- 0.12.0 (2024-05-16): Feasibility study-4 適用性研究之四
-
In Developing 開發階段
- 0.6.0-alpha (2024-02-07): Transition to new modules 新模組轉換
- Introduced two new module
Config
andOperator
, unified the variable and file names, and simplified SDV and Anonymeter modules, summarising all related classes and functions into a single file, respectively. - 新增兩個模組:
Config
與Operator
,以及進行變數及檔案名稱統一,並進行 SDV 及 Anonymeter 檔案的整併。
- Introduced two new module
- 0.5.0-alpha (2024-01-30): Transition to new modules 新模組轉換
- Introduced two new modules, Metadata and Processor, while retiring Pre/Postprocessor. Additionally, added the Anonymeter manual.
- 導入 Metadata 與 Processor 兩個新模組,同時下架 Pre/Postprocessor,同時新增 Anonymeter 手冊。
- 0.4.0-alpha (2024-01-12): Enriching README 充實讀我檔案
- Develop coding standards, improve existing code, create a demo website to store and showcase team's markdown format guidelines, and expand support for SDMetrics evaluation.
- 建立程式開發規則,並對現有代碼進行提升。並建構示範網站以存放並展示團隊的 markdown 格式指引。擴充支援 SDMetrics 評測。
- 0.3.0-alpha (2023-12-29): PETsARD functional pipeline release. PETsARD 功能流程釋出
- Following the ver. 1.2 specification which reconstructed on 2023-12-11, the new library is named PETsARD (Privacy Enhancing Technologies Analysis, Research, and Development). The library currently supports three privacy-enhancing technology steps: file reading, data preprocessing, and data synthesizing, coupled with two privacy-enhancing evaluation steps: cross-validation and data evaluation. These are integrated into a unified execution module, providing functionalities for metadata preservation and report output.
- 依照 2023-12-11 的 ver. 1.2 版規格書進行重構,新程式庫被稱為 PETsARD (隱私強化技術分析、研究與開發) 。程式庫目前可執行讀檔、資料前處理、資料合成三個隱私強化技術步驟,並搭配交叉驗證、資料評測兩個隱私強化評估步驟,並整合在統一的執行模組裡,提供中繼資料保存與報告輸出兩個功能。
- 0.2.0-alpha (2023-11-16): PETs_Tool release. PETs_Tool 釋出。
- Included PETs_Loader/Describer/Desc_Reporter/SD_SDV/util, executable Synthetic data pipeline is ready for programming.
- 已包含 PETs_Loader、Describer、Desc_Reporter、SD_SDV 及 util,可執行的合成資料流程已準備好進行程式設計。
- 0.1.0-alpha (2023-11-03): PET_raw_data release. PET_raw_data 釋出。
- Defined benchmark datasets and applied SDV as example.
- 決定經典資料集與 SDV 合成範例。
- 0.6.0-alpha (2024-02-07): Transition to new modules 新模組轉換