Skip to content

Latest commit

 

History

History
61 lines (59 loc) · 6.22 KB

CHANGELOG.md

File metadata and controls

61 lines (59 loc) · 6.22 KB

Changelog 歷史

  • Formal Release 正式版

    • 1.0.0 (2024-11-25): Release to moda 交付給數發部
      • Fix critical and urgent issues.
      • Close all issues and pull requests.
      • Clean up temporary files from development.
      • 解決必要且急迫的問題。
      • 關閉 issue 與 PR。
      • 清理開發過程中暫存臨時檔。
  • Beta testing 外部測試階段

    • 0.12.0 (2024-05-16): Feasibility study-4 適用性研究之四
      • Introduced Stats for new evaluating framework.
      • Introduced MissingMode for new MissingHandler.
      • Continue refining and debugging.
      • 引入新評測架構 Stats。
      • 引入新遺失值處理模組 MissingMode。
      • 持續優化與除錯。
    • 0.11.0 (2024-05-02): Feasibility study-3 適用性研究之三
      • Introduced MLUtility for new ML evaluating framework.
      • Continue refining and debugging.
      • 引入新機器學習評測架構 MLUtility。
      • 持續優化與除錯。
    • 0.10.0 (2024-04-12): Feasibility study-2 適用性研究之二
      • Refine the functions and fix the bugs in PETsARD.
      • Enhance the readability of YAML page in the user guide.
      • 改善 PETsARD 中的模組功能與除錯,以解決實驗過程中遇到的問題。
      • 改善使用手冊的易讀性。
    • 0.9.0 (2024-04-01): Feasibility study-1 適用性研究之一
      • Enhancing the downstream tasks of autoML as evaluation metrics and improving report generation functionality, addressing issues encountered during experiments.
      • Completed the development of the user guide and started seeking external testing.
      • 強化了autoML的下游任務作為評測標準,並改善報表生成功能,解決實驗過程中遇到的問題。
      • 完成了使用手冊的開發,開始尋求外部測試。
    • 0.8.0 (2024-03-14): Start Beta testing 外部測試開始
      • Provide a deeper description of YAML configurations and user stories in the new manual website. Also, address the issues encountered in functional testing across multiple modules.
      • DPCTGAN, PATEGAN in smartnoise can be accessed in Synthesizer now. Besides, the execution error from aim, mst, and pacsynth are fixed.
      • 新手冊網站上對 YAML 設定、以及用戶故事有更深入的描述。並解決多個模組在功能測試上遇到的問題。
      • smartnoise 的 DPCTGAN, PATEGAN 可以於 Synthesizer 中使用,並修正 aim、mst、pacsynth 執行過程中的錯誤。
    • 0.7.0 (2024-03-01): User Story completed 用戶故事完成
      • Two new modules have been added: Describer and Reporter. Also Executor, which can fully execute procedures according to YAML, is included, ensuring that all user stories in the spec are executed correctly.
      • 新增三個模組:DescriberReporter、以及能按照 YAML 完整執行流程的 Executor,以此確保規格說明書中所有的用戶故事都能正確執行。
  • In Developing 開發階段

    • 0.6.0-alpha (2024-02-07): Transition to new modules 新模組轉換
      • Introduced two new module Config and Operator, unified the variable and file names, and simplified SDV and Anonymeter modules, summarising all related classes and functions into a single file, respectively.
      • 新增兩個模組:ConfigOperator,以及進行變數及檔案名稱統一,並進行 SDV 及 Anonymeter 檔案的整併。
    • 0.5.0-alpha (2024-01-30): Transition to new modules 新模組轉換
      • Introduced two new modules, Metadata and Processor, while retiring Pre/Postprocessor. Additionally, added the Anonymeter manual.
      • 導入 Metadata 與 Processor 兩個新模組,同時下架 Pre/Postprocessor,同時新增 Anonymeter 手冊
    • 0.4.0-alpha (2024-01-12): Enriching README 充實讀我檔案
      • Develop coding standards, improve existing code, create a demo website to store and showcase team's markdown format guidelines, and expand support for SDMetrics evaluation.
      • 建立程式開發規則,並對現有代碼進行提升。並建構示範網站以存放並展示團隊的 markdown 格式指引。擴充支援 SDMetrics 評測。
    • 0.3.0-alpha (2023-12-29): PETsARD functional pipeline release. PETsARD 功能流程釋出
      • Following the ver. 1.2 specification which reconstructed on 2023-12-11, the new library is named PETsARD (Privacy Enhancing Technologies Analysis, Research, and Development). The library currently supports three privacy-enhancing technology steps: file reading, data preprocessing, and data synthesizing, coupled with two privacy-enhancing evaluation steps: cross-validation and data evaluation. These are integrated into a unified execution module, providing functionalities for metadata preservation and report output.
      • 依照 2023-12-11 的 ver. 1.2 版規格書進行重構,新程式庫被稱為 PETsARD (隱私強化技術分析、研究與開發) 。程式庫目前可執行讀檔、資料前處理、資料合成三個隱私強化技術步驟,並搭配交叉驗證、資料評測兩個隱私強化評估步驟,並整合在統一的執行模組裡,提供中繼資料保存與報告輸出兩個功能。
    • 0.2.0-alpha (2023-11-16): PETs_Tool release. PETs_Tool 釋出
      • Included PETs_Loader/Describer/Desc_Reporter/SD_SDV/util, executable Synthetic data pipeline is ready for programming.
      • 已包含 PETs_Loader、Describer、Desc_Reporter、SD_SDV 及 util,可執行的合成資料流程已準備好進行程式設計。
    • 0.1.0-alpha (2023-11-03): PET_raw_data release. PET_raw_data 釋出
      • Defined benchmark datasets and applied SDV as example.
      • 決定經典資料集與 SDV 合成範例。