-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
452 lines (395 loc) · 21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
from pathlib import Path
from collections import defaultdict
import hydra
import numpy as np
import torch
import wandb
from dm_env import specs
import tools.utils as utils
from tools.logger import Logger
from tools.replay import ReplayBuffer, make_replay_loader
torch.backends.cudnn.benchmark = True
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg):
cfg.obs_type = obs_type
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
cfg.num_expl_steps = num_expl_steps
return hydra.utils.instantiate(cfg)
def make_dreamer_agent(obs_space, action_spec, cur_config, cfg):
from copy import deepcopy
cur_config = deepcopy(cur_config)
if hasattr(cur_config, 'agent'):
del cur_config.agent
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec)
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None,):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
# create logger
self.logger = Logger(self.workdir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
# create envs
self.task = task = cfg.task
img_size = cfg.img_size
import envs.main as envs
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering)
# # create agent
sample_agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent)
# create replay buffer
data_specs = (self.train_env.obs_space,
self.train_env.act_space,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
if cfg.train_from_data:
# Loading replay buffer
if cfg.replay_from_wandb_project is not None:
api = wandb.Api()
project_name = cfg.replay_from_wandb_project
params2search = {
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot,
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot,
}
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}")
found = False
for run in runs:
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]):
found = True
found_path = Path(run.config['workdir'].replace('/code', ''))
break
if not found:
raise Exception("Replay from wandb buffer not found")
replay_dir = found_path / 'code' / 'buffer'
else:
replay_dir = Path(cfg.replay_load_dir)
# create data storage
self.replay_storage = ReplayBuffer(data_specs, [],
replay_dir,
length=cfg.batch_length, **cfg.replay,
device=cfg.device, ignore_extra_keys=True, load_recursive=True)
print('Loaded ', self.replay_storage._loaded_episodes, 'episodes from ', str(replay_dir))
# create replay buffer
self.replay_loader = make_replay_loader(self.replay_storage,
cfg.batch_size,)
self._replay_iter = None
# Loading snapshot
if cfg.snapshot_from_wandb_project is not None:
api = wandb.Api()
project_name = cfg.snapshot_from_wandb_project
params2search = {
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot,
"agent_name" : cfg.agent.name if cfg.agent_name_snapshot is None else cfg.agent_name_snapshot,
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot,
}
if cfg.agent.clip_lafite_noise > 0.:
params2search['clip_lafite_noise'] = cfg.agent.clip_lafite_noise
if cfg.agent.clip_add_noise > 0.:
params2search['clip_add_noise'] = cfg.agent.clip_add_noise
if cfg.reset_connector:
del params2search['clip_add_noise']
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}")
found = False
for run in runs:
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]):
found = True
found_path = Path(run.config['workdir'].replace('/code', ''))
break
if not found:
raise Exception("Snapshot from wandb not found")
if cfg.snapshot_step is None:
snapshot_dir = found_path / 'code' / 'last_snapshot.pt'
else:
snapshot_dir = found_path / 'code' / f'snapshot_{cfg.snapshot_step}.pt'
elif cfg.snapshot_load_dir is not None:
snapshot_dir = Path(cfg.snapshot_load_dir)
else:
snapshot_dir = None
if snapshot_dir is not None:
self.load_snapshot(snapshot_dir, resume=False)
if self.cfg.reset_world_model:
self.agent.wm = sample_agent.wm
# To reset optimization
from agent import dreamer_utils as common
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp)
if self.cfg.reset_connector:
self.agent.wm.connector = sample_agent.wm.connector
# To reset optimization
from agent import dreamer_utils as common
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp)
# overwriting cfg
self.agent.cfg = sample_agent.cfg
self.agent.wm.cfg = sample_agent.wm.cfg
if self.cfg.reset_imag_behavior:
self.agent.instantiate_imag_behavior()
else:
self.agent = sample_agent
self.eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64, )
if hasattr(self.eval_env, 'eval_mode'):
self.eval_env.eval_mode()
eval_specs = (self.eval_env.obs_space,
self.eval_env.act_space,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
self.eval_storage = ReplayBuffer(eval_specs, {},
self.workdir / 'eval_buffer',
length=cfg.batch_length, **cfg.replay,
device=cfg.device, ignore_extra_keys=True,)
self.eval_storage._minlen = 1
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
def eval(self):
import envs.main as envs
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
episode_reward = []
while eval_until_episode(len(episode_reward)):
if len(episode_reward) > 0 and self.global_step == 0:
return
episode_reward.append(0)
step, episode = 0, defaultdict(list)
meta = self.agent.init_meta()
time_step, dreamer_obs = self.eval_env.reset()
data = dreamer_obs
if 'clip_video' in data:
del data['clip_video']
self.eval_storage.add(data, meta)
agent_state = None
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action, agent_state = self.agent.act(dreamer_obs,
meta,
self.global_step,
eval_mode=True,
state=agent_state)
time_step, dreamer_obs = self.eval_env.step(action)
for k in dreamer_obs:
episode[k].append(dreamer_obs[k])
episode_reward[-1] += time_step.reward
if time_step.last():
if episode_reward[-1] == np.max(episode_reward):
best_episode = {**episode}
if episode_reward[-1] == np.min(episode_reward):
worst_episode = {**episode}
data = dreamer_obs
if 'clip_video' in data:
del data['clip_video']
self.eval_storage.add(data, meta)
step += 1
if self.global_step > 0 and self.global_frame % self.cfg.log_episodes_every_frames == 0:
# B, T, C, H, W = video.shape
videos = {'best_episode' : np.stack(best_episode['observation'], axis=0),
'worst_episode' : np.stack(worst_episode['observation'], axis=0),}
self.logger.log_visual(videos, self.global_frame)
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', np.mean(episode_reward))
log('episode_length', step * self.cfg.action_repeat)
log('episode', self.global_episode)
log('step', self.global_step)
def eval_imag_behavior(self,):
self.agent._backup_acting_behavior = self.agent._acting_behavior
self.agent._acting_behavior = self.agent._imag_behavior
self.eval()
self.agent._acting_behavior = self.agent._backup_acting_behavior
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames, 1)
eval_every_step = utils.Every(self.cfg.eval_every_frames, 1)
should_log_scalars = utils.Every(self.cfg.log_every_frames, 1)
should_save_model = utils.Every(self.cfg.save_every_frames, 1)
should_log_visual = utils.Every(self.cfg.visual_every_frames, 1)
metrics = None
while train_until_step(self.global_step):
# try to evaluate
if eval_every_step(self.global_step):
if self.cfg.eval_modality == 'task':
self.eval()
if self.cfg.eval_modality == 'task_imag':
self.eval_imag_behavior()
if self.cfg.eval_modality == 'from_text':
self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame)
self.eval_from_text()
if self.cfg.train_from_data:
# Sampling data
batch_data = next(self.replay_iter)
if self.cfg.train_world_model:
state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step)
else:
with torch.no_grad():
outputs, metrics = self.agent.wm.observe_data(batch_data,)
if self.cfg.train_connector:
_, metrics = self.agent.wm.update_additional_detached_modules(batch_data, outputs, metrics)
else:
imag_warmup_steps = self.cfg.imag_warmup_steps
metrics, batch_data = {}, None
with torch.no_grad():
# fake actions
mix = self.cfg.mix_random_actions
random = False
# num warmup steps
if mix:
init = self.agent.wm.rssm.initial(self.cfg.batch_size * (self.cfg.batch_length // 2))
else:
init = self.agent.wm.rssm.initial(self.cfg.batch_size * self.cfg.batch_length)
unif_dist = self.agent.wm.rssm.get_unif_dist(init)
if 'logit' in init:
init['logit'] = unif_dist.mean
else:
init['mean'] = unif_dist.mean
init['std'] = unif_dist.std
init['stoch'] = unif_dist.sample()
if self.cfg.start_from_video in [True, 'mix']:
T = self.agent.wm.connector.n_frames * 2 # should this be an hyperparam?
B = init['deter'].shape[0] // T
text_feat_dim = self.agent.wm.connector.viclip_emb_dim
video_embed = torch.randn((B, T, text_feat_dim), device=self.agent.device)
video_embed = torch.nn.functional.normalize(video_embed, dim=-1)
# Get initial state
video_init = self.agent.wm.connector.video_imagine(video_embed, dreamer_init=None, sample=True, reset_every_n_frames=False, denoise=True)
video_init = { k : v.reshape(B * T, *v.shape[2:]) for k, v in video_init.items()}
if self.cfg.start_from_video == 'mix':
probs = torch.rand((B * T, 1,1), device=init['stoch'].device) > 0.5 # should this be an hyperparam?
init['stoch'] = (probs * init['stoch']) + ( (~probs) * video_init['stoch'] )
else:
init['stoch'] = video_init['stoch']
if random:
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1
post = self.agent.wm.rssm.imagine(fake_action, init, sample=True)
post = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() }
elif mix:
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length // 2, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1
post1 = self.agent.wm.rssm.imagine(fake_action, init, sample=True)
post1 = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post1.items() }
init2 = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[1:])) for k,v in init.items() }
post2 = self.agent.wm.imagine(self.agent._imag_behavior.actor, init2, None, imag_warmup_steps)
post2 = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post2.items() }
post = { k: torch.cat([post1[k], post2[k]], dim=1) for k in post1 }
else:
init = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[1:])) for k,v in init.items() }
post = self.agent.wm.imagine(self.agent._imag_behavior.actor, init, None, imag_warmup_steps)
post = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() }
is_terminal = torch.zeros(self.cfg.batch_size, self.cfg.batch_length, device=self.agent.device)
outputs = dict(post=post, is_terminal=is_terminal)
if getattr(self.cfg.agent, 'imag_reward_fn', None) is not None:
metrics.update(self.agent.update_imag_behavior(state=None, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1])
if self.global_step > 0:
if should_log_scalars(self.global_step):
if hasattr(self, 'replay_storage'):
metrics.update(self.replay_storage.stats)
self.logger.log_metrics(metrics, self.global_frame, ty='train')
if should_log_visual(self.global_step) and self.cfg.train_from_data and hasattr(self.agent, 'report'):
with torch.no_grad(), utils.eval_mode(self.agent):
videos = self.agent.report(next(self.replay_iter))
self.logger.log_visual(videos, self.global_frame)
if should_log_scalars(self.global_step):
elapsed_time, total_time = self.timer.reset()
with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log:
log('fps', self.cfg.log_every_frames / elapsed_time)
log('step', self.global_step)
if 'model_loss' in metrics:
log('episode_reward', metrics['model_loss'].item())
# save last model
if should_save_model(self.global_step):
self.save_last_model()
self._global_step += 1
# == 1000 is to make sure everything is going well since the start
if (self.global_frame == 1000) or (self.global_frame % self.cfg.snapshot_every_frames == 0):
self.save_snapshot()
@utils.retry
def save_snapshot(self):
snapshot = self.root_dir / f'snapshot_{self.global_frame}.pt'
keys_to_save = ['agent', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def setup_wandb(self):
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name)
flat_cfg = utils.flatten_dict(cfg)
wandb.config.update(flat_cfg)
self.wandb_run_id = wandb.run.id
@utils.retry
def save_last_model(self):
snapshot = self.root_dir / 'last_snapshot.pt'
if snapshot.is_file():
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt"))
os.replace(snapshot, temp)
keys_to_save = ['agent', '_global_step', '_global_episode']
if self.cfg.use_wandb:
keys_to_save.append('wandb_run_id')
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
@utils.retry
def load_snapshot(self, snapshot_dir, resume=True):
print('Loading snapshot from: ', str(snapshot_dir))
try:
snapshot = snapshot_dir / 'last_snapshot.pt' if resume else snapshot_dir
with snapshot.open('rb') as f:
payload = torch.load(f)
except:
snapshot = Path(str(snapshot_dir).replace('last_snapshot', 'second_last_snapshot'))
with snapshot.open('rb') as f:
payload = torch.load(f)
if type(payload) != dict:
self.agent = payload
self.agent.requires_grad_(requires_grad=False)
return
for k,v in payload.items():
setattr(self, k, v)
if k == 'wandb_run_id' and resume:
assert wandb.run is None
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must")
def get_snapshot_dir(self):
snap_dir = self.cfg.snapshot_dir
snapshot_dir = self.workdir / Path(snap_dir)
snapshot_dir.mkdir(exist_ok=True, parents=True)
return snapshot_dir
def start_training(cfg, savedir, workdir):
from train import Workspace as W
root_dir = Path.cwd()
cfg.workdir = str(root_dir)
workspace = W(cfg, savedir, workdir)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot(workspace.root_dir)
if cfg.use_wandb and wandb.run is None:
# otherwise it was resumed
workspace.setup_wandb()
workspace.train()
@hydra.main(config_path='.', config_name='train')
def main(cfg):
start_training(cfg, None, None)
if __name__ == '__main__':
main()