-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathmain.py
executable file
·149 lines (123 loc) · 5.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
"""main.py: Train and/or chat with a bot. (work in progress).
Typical use cases:
1. Train a model specified by yaml config file, located at
path_to/my_config.yml, where paths are relative to project root:
./main.py --config path_to/my_config.yml
2. Train using mix of yaml config and cmd-line args, with
command-line args taking precedence over any values.
./main.py \
--config path_to/my_config.yml \
--model_params "{'batch_size': 32, 'optimizer': 'RMSProp'}"
3. Load a pretrained model that was saved in path_to/pretrained_dir,
which is assumed to be relative to the project root.
./main.py --pretrained_dir path_to/pretrained_dir
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
# Meaning of values:
# 1: INFO messages are not printed.
# 2: INFO, WARNING messages are not printed.
# I'm temporarily making the default '2' since the TF master
# branch (as of May 6) is spewing warnings that are clearly
# due to bugs on their side.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import data
import chatbot
import logging
import tensorflow as tf
from pydoc import locate
from utils import io_utils
# =============================================================================
# FLAGS: Command line argument parser from TensorFlow.
# =============================================================================
flags = tf.app.flags
flags.DEFINE_string(
flag_name="pretrained_dir",
default_value=None,
docstring="relative path to a pretrained model directory."
"It is assumed that the model is one from this repository, and "
" thus has certain files that are generated after any training"
" session (TL;DR: any ckpt_dir you've trained previously).")
flags.DEFINE_string(
flag_name="config",
default_value=None,
docstring="relative path to a valid yaml config file."
" For example: configs/example_cornell.yml")
flags.DEFINE_string(
flag_name="debug",
default_value=False,
docstring="If true, increases output verbosity (log levels).")
flags.DEFINE_string(
flag_name="model",
default_value="{}",
docstring="Options: chatbot.{DynamicBot,Simplebot,ChatBot}.")
flags.DEFINE_string(
flag_name="model_params",
default_value="{}",
docstring="Configuration dictionary, with supported keys specified by"
" those in chatbot.globals.py.")
flags.DEFINE_string(
flag_name="dataset",
default_value="{}",
docstring="Name (capitalized) of dataset to use."
" Options: [data.]{Cornell,Ubuntu,Reddit}."
" - Legend: [optional] {Pick,One,Of,These}.")
flags.DEFINE_string(
flag_name="dataset_params",
default_value="{}",
docstring="Configuration dictionary, with supported keys specified by"
" those in chatbot.globals.py.")
FLAGS = flags.FLAGS
def start_training(dataset, bot):
"""Train bot.
Will expand this function later to aid interactivity/updates.
"""
print("Training bot. CTRL-C to stop training.")
bot.train(dataset)
def start_chatting(bot):
"""Talk to bot.
Will re-add teacher mode soon. Old implementation in _decode.py."""
print("Initiating chat session.")
print("Your bot has a temperature of %.2f." % bot.temperature, end=" ")
if bot.temperature < 0.1:
print("Not very adventurous, are we?")
elif bot.temperature < 0.7:
print("This should be interesting . . . ")
else:
print("Enjoy your gibberish!")
bot.chat()
def main(argv):
if FLAGS.debug:
# Setting to '0': all tensorflow messages are logged.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
logging.basicConfig(level=logging.INFO)
# Extract the merged configs/dictionaries.
config = io_utils.parse_config(flags=FLAGS)
if config['model_params']['decode'] and config['model_params']['reset_model']:
print("Woops! You passed {decode: True, reset_model: True}."
" You can't chat with a reset bot! I'll set reset to False.")
config['model_params']['reset_model'] = False
# If loading from pretrained, double-check that certain values are correct.
# (This is not something a user need worry about -- done automatically)
if FLAGS.pretrained_dir is not None:
assert config['model_params']['decode'] \
and not config['model_params']['reset_model']
# Print out any non-default parameters given by user, so as to reassure
# them that everything is set up properly.
io_utils.print_non_defaults(config)
print("Setting up %s dataset." % config['dataset'])
dataset_class = locate(config['dataset']) or getattr(data, config['dataset'])
dataset = dataset_class(config['dataset_params'])
print("Creating", config['model'], ". . . ")
bot_class = locate(config['model']) or getattr(chatbot, config['model'])
bot = bot_class(dataset, config)
if not config['model_params']['decode']:
start_training(dataset, bot)
else:
start_chatting(bot)
if __name__ == "__main__":
tf.logging.set_verbosity('ERROR')
tf.app.run()