The purpose of phylodyn
is to facilitate phylodynamic inference and analysis in an approachable R package.
-
Install (if necessary) package dependencies and helpers
ape
,spam
anddevtools
usinginstall.packages
. -
Install
INLA
usinginstall.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE)
or check r-inla.org for the most up-to-date installation instructions. -
Load
devtools
usinglibrary(devtools)
. -
Install
phylodyn
usinga.
install_github("mdkarcher/phylodyn")
, orb.
install_github("mdkarcher/phylodyn", build_vignettes = TRUE)
if you want some illustrative vignettes (note: usingbuild_vignettes = TRUE
will make the install take longer).
-
SimpleBNPR: A short example showing how to use BNPR and BNPR-PS on simulated data, illustraring methodology in [2] and [5].
-
CovariatesBNPR: A short example showing how to use covariates within BNPR-PS on simulated data, illustraring methodology in [8].
-
NewYorkInfluenza: A case study analyzing influenza data from New York, reproducing analysis in [5] on data from [1].
-
RegionalInfluenza: A case study analyzing influenza data from nine geographic regions, reproducing analsyis in [5] on data from [3].
-
RegionalSeasonality: A case study analyzing influenza seasonality from nine geographic regions, reproducing analsyis in [5] on data from [3].
-
SimplePhyloinfer: A short example comparing BNPR with a split HMC MCMC sampler approach, illustrating methodology in [4].
-
LongPhyloinfer: A longer example comparing BNPR with multiple MCMC samplers, including split HMC as in SimplePhyloinfer, illustrating methodology in [4].
-
LocalGenealogies: A short example of MCMC-based inference of effective population size trajectories from a sequence of local genealogies. Genealogies are assumed to be a realization of the Sequentially Markov Coalescent (SMC') model. The methodology is developed in [6]
-
LocalGenealogiesSimulation: A short example of simulation of genealogies under isochronous and heterochronous sampling schemes, illustraring methodology in [2] and [5].
Datasets below can be found at: https://github.com/mdkarcher/PhyloData/
-
New York influenza BEAST XML for inferring genealogy using sequence data from [1].
- NewYork.xml
-
Regional influenza BEAST XML for inferring genealogy using sequence data from [3].
- Europe.xml
- India.xml
- JapanKorea.xml
- NorthChina.xml
- Oceania.xml
- SouthAmerica.xml
- SouthChina.xml
- SoutheastAsia.xml
- USACanada.xml
-
A. Rambaut, O. G. Pybus, M. I. Nelson, C. Viboud, J. K. Taubenberger, E. C. Holmes The genomic and epidemiological dynamics of human influenza A virus. Nature, 453(7195): 615–619, 2008.
-
J. A. Palacios and V. N. Minin. Integrated nested Laplace approximation for Bayesian nonparametric phylodynamics. In Proceedings of the Twenty-Eighth International Conference on Uncertainty in Artificial Intelligence, pages 726–735, 2012.
-
D. Zinder, T. Bedford, E. B. Baskerville, R. J. Woods, M. Roy, M. Pascual. Seasonality in the migration and establishment of H3N2 Influenza lineages with epidemic growth and decline. BMC Evolutionary Biology, 14(1): 272, 2014.
-
S. Lan, J. A. Palacios, M. Karcher, V. N. Minin, and B. Shahbaba. An Efficient Bayesian Inference Framework for Coalescent-Based Nonparametric Phylodynamics, Bioinformatics, 31(20): 3282-3289, 2015.
-
M. D. Karcher, J. A. Palacios, T. Bedford, M. A. Suchard, and V. N. Minin. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLOS Computational Biology, 12:e1004789, 2016.
-
J.A. Palacios, J. Wakeley, and S. Ramachandran. Bayesian nonparametric inference of population size changes from sequential genealogies. Genetics Vol. 201:281-304, 2015.
-
M. Karcher M, J.A. Palacios, S. Lan, V.N. Minin. phylodyn: an R package for phylodynamic simulation and inference, Molecular Ecology Resources, 17, 96-100, 2017.
-
Karcher MD, Suchard MA, Dudas G, Minin VN. Estimating effective population size changes from preferentially sampled genetic sequences, PLOS Computational Biology, 16: e1007774, 2020.