forked from Warblefly/TrackBoundaries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdedup.py
111 lines (87 loc) · 3.82 KB
/
dedup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/python3
### Dedup.py
###
### (C) John Warburton 2020
###
### Iterate through all combinations in a list of chromaprints,
### detect and print near matches.
### This helps eliminate tracks in a playlist that contain similar audio
###
### Uses parallel processing. Redirect output to get a list for working on.
###
import itertools
from rapidfuzz import fuzz
from multiprocessing import Pool
from multiprocessing import cpu_count
import argparse
import csv, sys
CPUCOUNT = cpu_count()
parser = argparse.ArgumentParser(description='Detects possibly duplicate tracks by their audio fingerprints.')
parser.add_argument('-i', '--input', default='chromaprints.csv',
help='Specify input CSV file containing chromaprints to be compared. Default: %(default)s')
parser.add_argument('-o', '--output', default='duplicates.csv',
help='Specify output CSV file containing possible duplicates. Default: %(default)s')
parser.add_argument('-m', '--match', default=70, type=int,
help='Integer specifying match factor required for duplicate detection. Default: %(default)i')
args = parser.parse_args()
# This is the filename of the .csv containing the chromaprints to compare
FILENAME = args.input
OUTPUT = args.output
MATCH = args.match
class csvTextBuilder(object):
def __init__(self):
self.csv_string = []
def write(self,row):
self.csv_string.append(row)
with open(FILENAME) as csvfile:
DATA = list(csv.reader(csvfile))
DATALENGTH = len(DATA)
print("We will use %s processes." % CPUCOUNT, file=sys.stderr)
print("We have read %s lines." % DATALENGTH, file=sys.stderr)
print("Starting to make list of combinations...", file=sys.stderr)
combos = list(itertools.combinations(range(0, DATALENGTH), 2))
print("There are %s combinations to explore." % len(combos), file=sys.stderr)
print("*** DATABASE", file=sys.stderr)
def checkcombo(tracklistCombos):
# print("Matching: ", tracklistCombos)
match = fuzz.ratio(DATA[tracklistCombos[0]][1], DATA[tracklistCombos[1]][1])
# if (match >= 50):
#print("We're matching %s with %s." % (DATA[tracklistCombos[0]][1], DATA[tracklistCombos[1]][1]))
#print("Closeness of %s is %s" % (tracklistCombos, match))
#print("This represents:")
#print(DATA[tracklistCombos[0]][0])
#print("and")
#print(DATA[tracklistCombos[1]][0])i
#print("%s, %s, %s" % (match, DATA[tracklistCombos[0]][0], DATA[tracklistCombos[1]][0]))
# print('%s, "%s", "%s"' % (match, DATA[tracklistCombos[0]][0].replace('"', '""'), DATA[tracklistCombos[1]][0].replace('"', '""')))
if (match >= MATCH):
# Check durations. Are the tracks within 120s of each other?
difference = abs(float(DATA[tracklistCombos[0]][2]) - float(DATA[tracklistCombos[1]][2]))
print("Match found: difference is %s" % difference, file=sys.stderr)
if difference <= 120:
csvdata = [match, DATA[tracklistCombos[0]][0], DATA[tracklistCombos[1]][0]]
csvfile = csvTextBuilder()
csvwriter = csv.writer(csvfile)
csvwriter.writerow(csvdata)
csvString = csvfile.csv_string
return(''.join(csvString))
# return('%s, "%s", "%s"\n' % (match, DATA[tracklistCombos[0]][0].replace('"', '""'), DATA[tracklistCombos[1]][0].replace('"', '""')))
else:
return("")
else:
return("")
def pool_handler():
p = Pool(CPUCOUNT)
with open(OUTPUT, 'w') as f:
for result in p.imap(checkcombo, combos, 250):
f.write(result)
if __name__ == '__main__':
pool_handler()
#for check in combos:
# match = fuzz.ratio(data[check[0]], data[check[1]])
# if (match >= 60):
# print("Closeness of %s is %s" % (check, match))
# print("This represents:")
# print(data[check[0]][0])
# print("and")
# print(data[check[1]][0])