Skip to content

Latest commit

 

History

History
172 lines (139 loc) · 7.35 KB

README.md

File metadata and controls

172 lines (139 loc) · 7.35 KB

Recasing and punctuation model based on Bert

Benoit Favre 2021

This system converts a sequence of lowercase tokens without punctuation to a sequence of cased tokens with punctuation.

It is trained to predict both aspects at the token level in a multitask fashion, from fine-tuned BERT representations.

The model predicts the following recasing labels:

  • lower: keep lowercase
  • upper: convert to upper case
  • capitalize: set first letter as upper case
  • other: left as is, but could be processed with a list

And the following punctuation labels:

  • o: no punctuation
  • period: .
  • comma: ,
  • question: ?
  • exclamation: !

Input tokens are batched as sequences of length 256 that are processed independently without overlap.

In training, batches containing less that 256 tokens are simulated by drawing uniformly a length and replacing all tokens and labels after that point with padding (called Cut-drop).

Changelog:

  • Add support for Zh and En models
  • Fix generation when input is smaller than max length

Installation

First install OS Deps:

apt install rustc cargo

Use your favourite method for installing Python requirements. For example:

python -m venv env
. env/bin/activate
pip3 install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Prediction

Predict from raw text:

python recasepunc.py predict checkpoint/path < input.txt > output.txt

Models

All models are trained from the 1st 100M tokens from Common Crawl

checkpoints/it.22000

{
  "iteration": "22000",
  "train_loss": "0.058934884114190934",
  "valid_loss": "0.06988634882792658",
  "valid_accuracy_case": "0.9575860089785607",
  "valid_accuracy_punc": "0.940614491584733",
  "valid_fscore": "{0: 0.6431694030761719, 1: 0.6150795817375183, 2: 0.7023577094078064, 3: 0.5514711737632751, 4: 0.21250930428504944}",
  "config": "{'seed': 871253, 'lang': 'it', 'flavor': 'dbmdz/bert-base-italian-uncased', 'max_length': 256, 'batch_size': 4, 'updates': 24000, 'period': 1000, 'lr': 1e-05, 'dab_rate': 0.1, 'device': device(type='cuda'), 'debug': False, 'action': 'train', 'action_args': ['data/it-100M.train.x', 'data/it-100M.train.y', 'data/it-100M.valid.x', 'data/it-100M.valid.y', 'checkpoints/it'], 'pad_token_id': 0, 'cls_token_id': 102, 'cls_token': '[CLS]', 'sep_token_id': 103, 'sep_token': '[SEP]'}"
}

checkpoints/zh.24000

{
  "iteration": "24000",
  "train_loss": "0.006788245493080467",
  "valid_loss": "0.007345725328494341",
  "valid_accuracy_case": "0.9963942307692307",
  "valid_accuracy_punc": "0.9692508012820513",
  "valid_fscore": "{0: 0.7727023363113403, 1: 0.7901785373687744, 2: 0.7293065190315247, 3: 0.7692307829856873, 4: 0.4615384638309479}",
  "config": "{'seed': 871253, 'lang': 'zh', 'flavor': 'ckiplab/bert-base-chinese', 'max_length': 256, 'batch_size': 16, 'updates': 24000, 'period': 1000, 'lr': 1e-05, 'dab_rate': 0.1, 'device': device(type='cuda'), 'debug': False, 'action': 'train', 'action_args': ['data/zh-100M.train.x', 'data/zh-100M.train.y', 'data/zh-100M.valid.x', 'data/zh-100M.valid.y', 'checkpoints/zh'], 'pad_token_id': 0, 'cls_token_id': 101, 'cls_token': '[CLS]', 'sep_token_id': 102, 'sep_token': '[SEP]'}"
}

checkpoints/en.23000

{
  "iteration": "23000",
  "train_loss": "0.014598741472698748",
  "valid_loss": "0.025432642453756087",
  "valid_accuracy_case": "0.9407051282051282",
  "valid_accuracy_punc": "0.9401041666666666",
  "valid_fscore": "{0: 0.6455026268959045, 1: 0.5925925970077515, 2: 0.7243649959564209, 3: 0.7027027010917664, 4: 0.03921568766236305}",                                                    
  "config": "{'seed': 871253, 'lang': 'en', 'flavor': 'bert-base-uncased', 'max_length': 256, 'batch_size': 16, 'updates': 24000, 'period': 1000, 'lr': 1e-05, 'dab_rate': 0.1, 'device': device(type='cuda'), 'debug': False, 'action': 'train', 'action_args': ['data/en-100M.train.x', 'data/en-100M.train.y', 'data/en-100M.valid.x', 'data/en-100M.valid.y', 'checkpoints/en'], 'pad_token_id': 0, 'cls_token_id': 101, 'cls_token': '[CLS]', 'sep_token_id': 102, 'sep_token': '[SEP]'}"                                                                                           
}

checkpoints/fr.22000

{
  "iteration": "22000",
  "train_loss": "0.02052250287961215",
  "valid_loss": "0.009240646392871171",
  "valid_accuracy_case": "0.9881810897435898",
  "valid_accuracy_punc": "0.9683493589743589",
  "valid_fscore": "{0: 0.802524745464325, 1: 0.7892595529556274, 2: 0.8360477685928345, 3: 0.8717948198318481, 4: 0.2068965584039688}",
  "config": "{'seed': 871253, 'lang': 'fr', 'flavor': 'flaubert/flaubert_base_uncased', 'max_length': 256, 'batch_size': 16, 'updates': 24000, 'period': 1000, 'lr': 1e-05, 'dab_rate': 0.1, 'device': device(type='cuda'), 'debug': False, 'action': 'train', 'action_args': ['data/fr-100M.train.x', 'data/fr-100M.train.y', 'data/fr-100M.valid.x', 'data/fr-100M.valid.y', 'checkpoints/fr'], 'pad_token_id': 2, 'cls_token_id': 0, 'cls_token': '<s>', 'sep_token_id': 1, 'sep_token': '</s>'}"
}

We create the ES model, this was created with the FIRST 100k lines from Crawl data and later tokenized

tail -n 100000 es.txt > sample100k.es
{
  "iteration": "24000",
  "train_loss": "0.0021631351880828332",
  "valid_loss": "0.00027729603337700326",
  "valid_accuracy_case": "0.9994236930928776",
  "valid_accuracy_punc": "0.9997003815549178",
  "valid_fscore": "{0: 0.9979087710380554, 1: 0.9983382821083069, 2: 0.9978544116020203, 3: 0.9914993643760681, 4: 0.9883458614349365}",
}

Training

Notes: You need to modify file names adequately. Training tensors are precomputed and loaded to CPU memory, models and batches are moved to CUDA memory.

Stage 0: download text data

Stage 0.5: create a folder to maintain all data related out of this code

mkdir training_folder

Stage 1: tokenize and normalize text with Moses tokenizer, and extract recasing and repunctuation labels

python recasepunc.py preprocess --lang $LANG < sample100k.es > training_folder/input.case+punc

Stage 2: sub-tokenize with Flaubert tokenizer, and generate pytorch tensors

python recasepunc.py tensorize training_folder/input.case+punc training_folder/input.case+punc.x training_folder/input.case+punc.y --lang $LANG

Stage 3: split data in training valid and test

python recasepunc.py split-data training_folder/input.case+punc.x training_folder/input.case+punc.y

Stage 4: train model

mkdir -p checkpoint/$LANG
python recasepunc.py train training_folder/input.case+punc_train.x training_folder/input.case+punc_train.y training_folder/input.case+punc_val.x training_folder/input.case+punc_val.y checkpoint/$LANG --lang $LANG

Stage 5: evaluate performance on a test set

python recasepunc.py eval training_folder/input.case+punc_test.x training_folder/input.case+punc_test.y checkpoint/$LANG.iteration

Notes

The training TIME was arround 72hs with 6x 3060 cards (120 Tflops)

This work was not published, but a similar model is described in "FullStop: Multilingual Deep Models for Punctuation Prediction", Frank et al, 2021.