-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheuclidean.rs
72 lines (58 loc) · 2 KB
/
euclidean.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
use std::borrow::Cow;
use bytemuck::{Pod, Zeroable};
use rand::Rng;
use super::two_means;
use crate::distance::Distance;
use crate::node::{Leaf, UnalignedF32Slice};
use crate::parallel::ImmutableSubsetLeafs;
use crate::spaces::simple::{dot_product, euclidean_distance};
/// The Euclidean distance between two points in Euclidean space
/// is the length of the line segment between them.
///
/// `d(p, q) = sqrt((p - q)²)`
#[derive(Debug, Clone)]
pub enum Euclidean {}
/// The header of Euclidean leaf nodes.
#[repr(C)]
#[derive(Pod, Zeroable, Debug, Clone, Copy)]
pub struct NodeHeaderEuclidean {
/// An extra constant term to determine the offset of the plane
bias: f32,
}
impl Distance for Euclidean {
type Header = NodeHeaderEuclidean;
fn name() -> &'static str {
"euclidean"
}
fn new_header(_vector: &UnalignedF32Slice) -> Self::Header {
NodeHeaderEuclidean { bias: 0.0 }
}
fn built_distance(p: &Leaf<Self>, q: &Leaf<Self>) -> f32 {
euclidean_distance(&p.vector, &q.vector)
}
fn init(_node: &mut Leaf<Self>) {}
fn create_split<R: Rng>(
children: &ImmutableSubsetLeafs<Self>,
rng: &mut R,
) -> heed::Result<Vec<f32>> {
let [node_p, node_q] = two_means(rng, children, false)?;
let vector = node_p.vector.iter().zip(node_q.vector.iter()).map(|(p, q)| p - q).collect();
let mut normal =
Leaf { header: NodeHeaderEuclidean { bias: 0.0 }, vector: Cow::Owned(vector) };
Self::normalize(&mut normal);
normal.header.bias = normal
.vector
.iter()
.zip(node_p.vector.iter())
.zip(node_q.vector.iter())
.map(|((n, p), q)| -n * (p + q) / 2.0)
.sum();
Ok(normal.vector.into_owned())
}
fn margin(p: &Leaf<Self>, q: &Leaf<Self>) -> f32 {
p.header.bias + dot_product(&p.vector, &q.vector)
}
fn margin_no_header(p: &UnalignedF32Slice, q: &UnalignedF32Slice) -> f32 {
dot_product(p, q)
}
}