-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
336 lines (256 loc) · 9.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import sys
import numpy as np
import math
import time
import shutil, errno
from distutils.dir_util import copy_tree
import sklearn.metrics as skm
from sklearn.covariance import ledoit_wolf
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
import torch
import torch.nn.functional as F
from torchvision import transforms, datasets
#### logging ####
def save_checkpoint(state, is_best, results_dir, filename="checkpoint.pth.tar"):
torch.save(state, os.path.join(results_dir, filename))
if is_best:
shutil.copyfile(
os.path.join(results_dir, filename),
os.path.join(results_dir, "model_best.pth.tar"),
)
def create_subdirs(sub_dir):
os.mkdir(sub_dir)
os.mkdir(os.path.join(sub_dir, "checkpoint"))
def clone_results_to_latest_subdir(src, dst):
if not os.path.exists(dst):
os.mkdir(dst)
copy_tree(src, dst)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
#### evaluation ####
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_features(model, dataloader, max_images=10 ** 10, verbose=False):
features, labels = [], []
total = 0
model.eval()
for index, (img, label) in enumerate(dataloader):
if total > max_images:
break
img, label = img.cuda(), label.cuda()
features += list(model(img).data.cpu().numpy())
labels += list(label.data.cpu().numpy())
if verbose and not index % 50:
print(index)
total += len(img)
return np.array(features), np.array(labels)
def baseeval(model, device, val_loader, criterion, args, epoch=0):
"""
Evaluating on validation set inputs.
"""
batch_time = AverageMeter("Time", ":6.3f")
losses = AverageMeter("Loss", ":.4f")
top1 = AverageMeter("Acc_1", ":6.2f")
top5 = AverageMeter("Acc_5", ":6.2f")
progress = ProgressMeter(
len(val_loader), [batch_time, losses, top1, top5], prefix="Test: "
)
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, data in enumerate(val_loader):
images, target = data[0].to(device), data[1].to(device)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % args.print_freq == 0:
progress.display(i)
progress.display(i) # print final results
return top1.avg, top5.avg
def knn(model, device, val_loader, criterion, args, writer, epoch=0):
"""
Evaluating knn accuracy in feature space.
Calculates only top-1 accuracy (returns 0 for top-5)
"""
model.eval()
features = []
labels = []
with torch.no_grad():
end = time.time()
for i, data in enumerate(val_loader):
images, target = data[0].to(device), data[1]
# compute output
output = F.normalize(model(images), dim=-1).data.cpu()
features.append(output)
labels.append(target)
features = torch.cat(features).numpy()
labels = torch.cat(labels).numpy()
cls = KNeighborsClassifier(20, metric="cosine").fit(features, labels)
acc = 100 * np.mean(cross_val_score(cls, features, labels))
print(f"knn accuracy for test data = {acc}")
return acc, 0
def softmax(x):
f_x = np.exp(x) / np.sum(np.exp(x))
return f_x
def normalization(data):
_range = np.max(data) - np.min(data)
return (data - np.min(data)) / _range
#### OOD detection ####
def get_roc_sklearn(xin, xood):
labels = [0] * len(xin) + [1] * len(xood)
data = np.concatenate((xin, xood))
# data=softmax(normalization(data))
# data=data**(3/2)
auroc = skm.roc_auc_score(labels, data)
return auroc
def get_pr_sklearn(xin, xood):
labels = [0] * len(xin) + [1] * len(xood)
data = np.concatenate((xin, xood))
aupr = skm.average_precision_score(labels, data)
return aupr
def get_fpr(xin, xood):
return np.sum(xood < np.percentile(xin, 95)) / len(xood)
def get_scores_one_cluster(ftrain, ftest, food, shrunkcov=False):
if shrunkcov:
print("Using ledoit-wolf covariance estimator.")
cov = lambda x: ledoit_wolf(x)[0]
else:
cov = lambda x: np.cov(x.T, bias=True)
# ToDO: Simplify these equations
dtest = np.sum(
(ftest - np.mean(ftrain, axis=0, keepdims=True))
* (
np.linalg.pinv(cov(ftrain)).dot(
(ftest - np.mean(ftrain, axis=0, keepdims=True)).T
)
).T,
axis=-1,
)
dood = np.sum(
(food - np.mean(ftrain, axis=0, keepdims=True))
* (
np.linalg.pinv(cov(ftrain)).dot(
(food - np.mean(ftrain, axis=0, keepdims=True)).T
)
).T,
axis=-1,
)
return dtest, dood
#### Dataloaders ####
def readloader(dataloader):
images = []
labels = []
for img, label in dataloader:
images.append(img)
labels.append(label)
return torch.cat(images), torch.cat(labels)
def unnormalize(x, norm_layer):
m, s = (
torch.tensor(norm_layer.mean).view(1, 3, 1, 1),
torch.tensor(norm_layer.std).view(1, 3, 1, 1),
)
return x * s + m
class ssdk_dataset(torch.utils.data.Dataset):
def __init__(self, images, norm_layer, copies=1, s=32):
self.images = images
# immitating transformations used at training self-supervised models
# replace it if training models with a different data augmentation pipeline
self.tr = transforms.Compose(
[
transforms.ToPILImage(),
transforms.RandomResizedCrop(s, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply(
[transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8
),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
norm_layer,
]
)
self.n = len(images)
self.size = len(images) * copies
def __len__(self):
return self.size
def __getitem__(self, idx):
return self.tr(self.images[idx % self.n]), 0
def sliceloader(dataloader, norm_layer, k=1, copies=1, batch_size=128, size=32):
images, labels = readloader(dataloader)
indices = np.random.permutation(np.arange(len(images)))
images, labels = images[indices], labels[indices]
index_k = torch.cat(
[torch.where(labels == i)[0][0:k] for i in torch.unique(labels)]
).numpy()
index_not_k = np.setdiff1d(np.arange(len(images)), index_k)
dataset_k = ssdk_dataset(
unnormalize(images[index_k], norm_layer), norm_layer, copies, size
)
dataset_not_k = torch.utils.data.TensorDataset(
images[index_not_k], labels[index_not_k]
)
print(
f"Number of selected OOD images (k * num_classes_ood_dataset) = {len(index_k)} \nNumber of OOD images after augmentation = {len(dataset_k)} \nRemaining number of test images in OOD dataset = {len(dataset_not_k)}"
)
loader_k = torch.utils.data.DataLoader(
dataset_k, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True
)
loader_not_k = torch.utils.data.DataLoader(
dataset_not_k,
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True,
)
return loader_k, loader_not_k