forked from JShubhM15/recommender_systems
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader_terabyte.py
173 lines (141 loc) · 5.51 KB
/
data_loader_terabyte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import numpy as np
import torch
import time
import math
class DataLoader:
"""
DataLoader dedicated for the Criteo Terabyte Click Logs dataset
"""
def __init__(
self,
data_filename,
data_directory,
days,
batch_size,
split = "train",
drop_last_batch=False
):
self.data_filename = data_filename
self.data_directory = data_directory
self.days = days
self.batch_size = batch_size
total_file = os.path.join(
data_directory,
data_filename + "_day_count.npz"
)
with np.load(total_file) as data:
total_per_file = data["total_per_file"][np.array(days)]
self.length = sum(total_per_file)
if split == "test" or split == "val":
self.length = int(np.ceil(self.length / 2.))
self.split = split
self.drop_last_batch = drop_last_batch
def __iter__(self):
return iter(_batch_generator(self.data_filename, self.data_directory, self.days,
self.batch_size, self.split, self.drop_last_batch))
def __len__(self):
if self.drop_last_batch:
return self.length // self.batch_size
else:
return math.ceil(self.length / self.batch_size)
def _batch_generator(data_filename, data_directory, days, batch_size, split, drop_last):
previous_file = None
for day in days:
filepath = os.path.join(
data_directory,
data_filename + "_{}_reordered.npz".format(day)
)
# print('Loading file: ', filepath)
with np.load(filepath) as data:
x_int = data["X_int"]
x_cat = data["X_cat"]
y = data["y"]
samples_in_file = y.shape[0]
batch_start_idx = 0
if split == "test" or split == "val":
length = int(np.ceil(samples_in_file / 2.))
if split == "test":
samples_in_file = length
elif split == "val":
batch_start_idx = samples_in_file - length
while batch_start_idx < samples_in_file - batch_size:
missing_samples = batch_size
if previous_file is not None:
missing_samples -= previous_file['y'].shape[0]
current_slice = slice(batch_start_idx, batch_start_idx + missing_samples)
x_int_batch = x_int[current_slice]
x_cat_batch = x_cat[current_slice]
y_batch = y[current_slice]
if previous_file is not None:
x_int_batch = np.concatenate(
[previous_file['x_int'], x_int_batch],
axis=0
)
x_cat_batch = np.concatenate(
[previous_file['x_cat'], x_cat_batch],
axis=0
)
y_batch = np.concatenate([previous_file['y'], y_batch], axis=0)
previous_file = None
if x_int_batch.shape[0] != batch_size:
raise ValueError('should not happen')
yield _transform_features(x_int_batch, x_cat_batch, y_batch)
batch_start_idx += missing_samples
if batch_start_idx != samples_in_file:
current_slice = slice(batch_start_idx, samples_in_file)
if previous_file is not None:
previous_file = {
'x_int' : np.concatenate(
[previous_file['x_int'], x_int[current_slice]],
axis=0
),
'x_cat' : np.concatenate(
[previous_file['x_cat'], x_cat[current_slice]],
axis=0
),
'y' : np.concatenate([previous_file['y'], y[current_slice]], axis=0)
}
else:
previous_file = {
'x_int' : x_int[current_slice],
'x_cat' : x_cat[current_slice],
'y' : y[current_slice]
}
if not drop_last:
yield _transform_features(previous_file['x_int'],
previous_file['x_cat'],
previous_file['y'])
def _transform_features(x_int_batch, x_cat_batch, y_batch):
x_int_batch = torch.log(torch.tensor(x_int_batch, dtype=torch.float) + 1)
x_cat_batch = torch.tensor(x_cat_batch, dtype=torch.long)
y_batch = torch.tensor(y_batch, dtype=torch.float32).view(-1, 1)
batch_size = x_cat_batch.shape[0]
feature_count = x_cat_batch.shape[1]
lS_o = torch.arange(batch_size).reshape(1, -1).repeat(feature_count, 1)
return x_int_batch, lS_o, x_cat_batch.t(), y_batch.view(-1, 1)
def _test():
generator = _batch_generator(
data_filename='day',
data_directory='/input',
days=range(23),
split="train",
batch_size=2048
)
t1 = time.time()
for x_int, lS_o, x_cat, y in generator:
t2 = time.time()
time_diff = t2 - t1
t1 = t2
print(
"time {} x_int.shape: {} lS_o.shape: {} x_cat.shape: {} y.shape: {}".format(
time_diff, x_int.shape, lS_o.shape, x_cat.shape, y.shape
)
)
if __name__ == '__main__':
_test()