-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathCryptRand.c
943 lines (880 loc) · 33.6 KB
/
CryptRand.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* Microsoft Reference Implementation for TPM 2.0
*
* The copyright in this software is being made available under the BSD License,
* included below. This software may be subject to other third party and
* contributor rights, including patent rights, and no such rights are granted
* under this license.
*
* Copyright (c) Microsoft Corporation
*
* All rights reserved.
*
* BSD License
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS""
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//** Introduction
// This file implements a DRBG with a behavior according to SP800-90A using
// a block cypher. This is also compliant to ISO/IEC 18031:2011(E) C.3.2.
//
// A state structure is created for use by TPM.lib and functions
// within the CryptoEngine my use their own state structures when they need to have
// deterministic values.
//
// A debug mode is available that allows the random numbers generated for TPM.lib
// to be repeated during runs of the simulator. The switch for it is in
// TpmBuildSwitches.h. It is USE_DEBUG_RNG.
//
//
// This is the implementation layer of CTR DRGB mechanism as defined in SP800-90A
// and the functions are organized as closely as practical to the organization in
// SP800-90A. It is intended to be compiled as a separate module that is linked
// with a secure application so that both reside inside the same boundary
// [SP 800-90A 8.5]. The secure application in particular manages the accesses
// protected storage for the state of the DRBG instantiations, and supplies the
// implementation functions here with a valid pointer to the working state of the
// given instantiations (as a DRBG_STATE structure).
//
// This DRBG mechanism implementation does not support prediction resistance. Thus
// 'prediction_resistance_flag' is omitted from Instantiate_function(),
// Reseed_function(), Generate_function() argument lists [SP 800-90A 9.1, 9.2,
// 9.3], as well as from the working state data structure DRBG_STATE [SP 800-90A
// 9.1].
//
// This DRBG mechanism implementation always uses the highest security strength of
// available in the block ciphers. Thus 'requested_security_strength' parameter is
// omitted from Instantiate_function() and Generate_function() argument lists
// [SP 800-90A 9.1, 9.2, 9.3], as well as from the working state data structure
// DRBG_STATE [SP 800-90A 9.1].
//
// Internal functions (ones without Crypt prefix) expect validated arguments and
// therefore use assertions instead of runtime parameter checks and mostly return
// void instead of a status value.
#include "Tpm.h"
// Pull in the test vector definitions and define the space
#include "PRNG_TestVectors.h"
const BYTE DRBG_NistTestVector_Entropy[] = {DRBG_TEST_INITIATE_ENTROPY};
const BYTE DRBG_NistTestVector_GeneratedInterm[] = {DRBG_TEST_GENERATED_INTERM};
const BYTE DRBG_NistTestVector_EntropyReseed[] = {DRBG_TEST_RESEED_ENTROPY};
const BYTE DRBG_NistTestVector_Generated[] = {DRBG_TEST_GENERATED};
//** Derivation Functions
//*** Description
// The functions in this section are used to reduce the personalization input values
// to make them usable as input for reseeding and instantiation. The overall
// behavior is intended to produce the same results as described in SP800-90A,
// section 10.4.2 "Derivation Function Using a Block Cipher Algorithm
// (Block_Cipher_df)." The code is broken into several subroutines to deal with the
// fact that the data used for personalization may come in several separate blocks
// such as a Template hash and a proof value and a primary seed.
//*** Derivation Function Defines and Structures
#define DF_COUNT (DRBG_KEY_SIZE_WORDS / DRBG_IV_SIZE_WORDS + 1)
#if DRBG_KEY_SIZE_BITS != 128 && DRBG_KEY_SIZE_BITS != 256
# error "CryptRand.c only written for AES with 128- or 256-bit keys."
#endif
typedef struct
{
DRBG_KEY_SCHEDULE keySchedule;
DRBG_IV iv[DF_COUNT];
DRBG_IV out1;
DRBG_IV buf;
int contents;
} DF_STATE, *PDF_STATE;
//*** DfCompute()
// This function does the incremental update of the derivation function state. It
// encrypts the 'iv' value and XOR's the results into each of the blocks of the
// output. This is equivalent to processing all of input data for each output block.
static void DfCompute(PDF_STATE dfState)
{
int i;
int iv;
crypt_uword_t* pIv;
crypt_uword_t temp[DRBG_IV_SIZE_WORDS] = {0};
//
for(iv = 0; iv < DF_COUNT; iv++)
{
pIv = (crypt_uword_t*)&dfState->iv[iv].words[0];
for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)
{
temp[i] ^= pIv[i] ^ dfState->buf.words[i];
}
DRBG_ENCRYPT(&dfState->keySchedule, &temp, pIv);
}
for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)
dfState->buf.words[i] = 0;
dfState->contents = 0;
}
//*** DfStart()
// This initializes the output blocks with an encrypted counter value and
// initializes the key schedule.
static void DfStart(PDF_STATE dfState, uint32_t inputLength)
{
BYTE init[8];
int i;
UINT32 drbgSeedSize = sizeof(DRBG_SEED);
const BYTE dfKey[DRBG_KEY_SIZE_BYTES] =
{ 0x00,
0x01,
0x02,
0x03,
0x04,
0x05,
0x06,
0x07,
0x08,
0x09,
0x0a,
0x0b,
0x0c,
0x0d,
0x0e,
0x0f
#if DRBG_KEY_SIZE_BYTES > 16
,
0x10,
0x11,
0x12,
0x13,
0x14,
0x15,
0x16,
0x17,
0x18,
0x19,
0x1a,
0x1b,
0x1c,
0x1d,
0x1e,
0x1f
#endif
};
memset(dfState, 0, sizeof(DF_STATE));
DRBG_ENCRYPT_SETUP(&dfKey[0], DRBG_KEY_SIZE_BITS, &dfState->keySchedule);
// Create the first chaining values
for(i = 0; i < DF_COUNT; i++)
((BYTE*)&dfState->iv[i])[3] = (BYTE)i;
DfCompute(dfState);
// initialize the first 64 bits of the IV in a way that doesn't depend
// on the size of the words used.
UINT32_TO_BYTE_ARRAY(inputLength, init);
UINT32_TO_BYTE_ARRAY(drbgSeedSize, &init[4]);
memcpy(&dfState->iv[0], init, 8);
dfState->contents = 4;
}
//*** DfUpdate()
// This updates the state with the input data. A byte at a time is moved into the
// state buffer until it is full and then that block is encrypted by DfCompute().
static void DfUpdate(PDF_STATE dfState, int size, const BYTE* data)
{
while(size > 0)
{
int toFill = DRBG_IV_SIZE_BYTES - dfState->contents;
if(size < toFill)
toFill = size;
// Copy as many bytes as there are or until the state buffer is full
memcpy(&dfState->buf.bytes[dfState->contents], data, toFill);
// Reduce the size left by the amount copied
size -= toFill;
// Advance the data pointer by the amount copied
data += toFill;
// increase the buffer contents count by the amount copied
dfState->contents += toFill;
pAssert(dfState->contents <= DRBG_IV_SIZE_BYTES);
// If we have a full buffer, do a computation pass.
if(dfState->contents == DRBG_IV_SIZE_BYTES)
DfCompute(dfState);
}
}
//*** DfEnd()
// This function is called to get the result of the derivation function computation.
// If the buffer is not full, it is padded with zeros. The output buffer is
// structured to be the same as a DRBG_SEED value so that the function can return
// a pointer to the DRBG_SEED value in the DF_STATE structure.
static DRBG_SEED* DfEnd(PDF_STATE dfState)
{
// Since DfCompute is always called when a buffer is full, there is always
// space in the buffer for the terminator
dfState->buf.bytes[dfState->contents++] = 0x80;
// If the buffer is not full, pad with zeros
while(dfState->contents < DRBG_IV_SIZE_BYTES)
dfState->buf.bytes[dfState->contents++] = 0;
// Do a final state update
DfCompute(dfState);
return (DRBG_SEED*)&dfState->iv;
}
//*** DfBuffer()
// Function to take an input buffer and do the derivation function to produce a
// DRBG_SEED value that can be used in DRBG_Reseed();
static DRBG_SEED* DfBuffer(DRBG_SEED* output, // OUT: receives the result
int size, // IN: size of the buffer to add
BYTE* buf // IN: address of the buffer
)
{
DF_STATE dfState;
if(size == 0 || buf == NULL)
return NULL;
// Initialize the derivation function
DfStart(&dfState, size);
DfUpdate(&dfState, size, buf);
DfEnd(&dfState);
memcpy(output, &dfState.iv[0], sizeof(DRBG_SEED));
return output;
}
//*** DRBG_GetEntropy()
// Even though this implementation never fails, it may get blocked
// indefinitely long in the call to get entropy from the platform
// (DRBG_GetEntropy32()).
// This function is only used during instantiation of the DRBG for
// manufacturing and on each start-up after an non-orderly shutdown.
//
// Return Type: BOOL
// TRUE(1) requested entropy returned
// FALSE(0) entropy Failure
BOOL DRBG_GetEntropy(UINT32 requiredEntropy, // IN: requested number of bytes of full
// entropy
BYTE* entropy // OUT: buffer to return collected entropy
)
{
#if !USE_DEBUG_RNG
UINT32 obtainedEntropy;
INT32 returnedEntropy;
// If in debug mode, always use the self-test values for initialization
if(IsSelfTest())
{
#endif
// If doing simulated DRBG, then check to see if the
// entropyFailure condition is being tested
if(!IsEntropyBad())
{
// In self-test, the caller should be asking for exactly the seed
// size of entropy.
pAssert(requiredEntropy == sizeof(DRBG_NistTestVector_Entropy));
memcpy(entropy,
DRBG_NistTestVector_Entropy,
sizeof(DRBG_NistTestVector_Entropy));
}
#if !USE_DEBUG_RNG
}
else if(!IsEntropyBad())
{
// Collect entropy
// Note: In debug mode, the only "entropy" value ever returned
// is the value of the self-test vector.
for(returnedEntropy = 1, obtainedEntropy = 0;
obtainedEntropy < requiredEntropy && !IsEntropyBad();
obtainedEntropy += returnedEntropy)
{
returnedEntropy = _plat__GetEntropy(&entropy[obtainedEntropy],
requiredEntropy - obtainedEntropy);
if(returnedEntropy <= 0)
SetEntropyBad();
}
}
#endif
return !IsEntropyBad();
}
//*** IncrementIv()
// This function increments the IV value by 1. It is used by EncryptDRBG().
void IncrementIv(DRBG_IV* iv)
{
BYTE* ivP = ((BYTE*)iv) + DRBG_IV_SIZE_BYTES;
while((--ivP >= (BYTE*)iv) && ((*ivP = ((*ivP + 1) & 0xFF)) == 0))
;
}
//*** EncryptDRBG()
// This does the encryption operation for the DRBG. It will encrypt
// the input state counter (IV) using the state key. Into the output
// buffer for as many times as it takes to generate the required
// number of bytes.
static BOOL EncryptDRBG(BYTE* dOut,
UINT32 dOutBytes,
DRBG_KEY_SCHEDULE* keySchedule,
DRBG_IV* iv,
UINT32* lastValue // Points to the last output value
)
{
#if FIPS_COMPLIANT
// For FIPS compliance, the DRBG has to do a continuous self-test to make sure that
// no two consecutive values are the same. This overhead is not incurred if the TPM
// is not required to be FIPS compliant
//
UINT32 temp[DRBG_IV_SIZE_BYTES / sizeof(UINT32)];
int i;
BYTE* p;
for(; dOutBytes > 0;)
{
// Increment the IV before each encryption (this is what makes this
// different from normal counter-mode encryption
IncrementIv(iv);
DRBG_ENCRYPT(keySchedule, iv, temp);
// Expect a 16 byte block
# if DRBG_IV_SIZE_BITS != 128
# error "Unsuppored IV size in DRBG"
# endif
if((lastValue[0] == temp[0]) && (lastValue[1] == temp[1])
&& (lastValue[2] == temp[2]) && (lastValue[3] == temp[3]))
{
LOG_FAILURE(FATAL_ERROR_ENTROPY);
return FALSE;
}
lastValue[0] = temp[0];
lastValue[1] = temp[1];
lastValue[2] = temp[2];
lastValue[3] = temp[3];
i = MIN(dOutBytes, DRBG_IV_SIZE_BYTES);
dOutBytes -= i;
for(p = (BYTE*)temp; i > 0; i--)
*dOut++ = *p++;
}
#else // version without continuous self-test
NOT_REFERENCED(lastValue);
for(; dOutBytes >= DRBG_IV_SIZE_BYTES;
dOut = &dOut[DRBG_IV_SIZE_BYTES], dOutBytes -= DRBG_IV_SIZE_BYTES)
{
// Increment the IV
IncrementIv(iv);
DRBG_ENCRYPT(keySchedule, iv, dOut);
}
// If there is a partial, generate into a block-sized
// temp buffer and copy to the output.
if(dOutBytes != 0)
{
BYTE temp[DRBG_IV_SIZE_BYTES];
// Increment the IV
IncrementIv(iv);
DRBG_ENCRYPT(keySchedule, iv, temp);
memcpy(dOut, temp, dOutBytes);
}
#endif
return TRUE;
}
//*** DRBG_Update()
// This function performs the state update function.
// According to SP800-90A, a temp value is created by doing CTR mode
// encryption of 'providedData' and replacing the key and IV with
// these values. The one difference is that, with counter mode, the
// IV is incremented after each block is encrypted and in this
// operation, the counter is incremented before each block is
// encrypted. This function implements an 'optimized' version
// of the algorithm in that it does the update of the drbgState->seed
// in place and then 'providedData' is XORed into drbgState->seed
// to complete the encryption of 'providedData'. This works because
// the IV is the last thing that gets encrypted.
//
static BOOL DRBG_Update(
DRBG_STATE* drbgState, // IN:OUT state to update
DRBG_KEY_SCHEDULE* keySchedule, // IN: the key schedule (optional)
DRBG_SEED* providedData // IN: additional data
)
{
UINT32 i;
BYTE* temp = (BYTE*)&drbgState->seed;
DRBG_KEY* key = pDRBG_KEY(&drbgState->seed);
DRBG_IV* iv = pDRBG_IV(&drbgState->seed);
DRBG_KEY_SCHEDULE localKeySchedule;
//
pAssert(drbgState->magic == DRBG_MAGIC);
// If an key schedule was not provided, make one
if(keySchedule == NULL)
{
if(DRBG_ENCRYPT_SETUP((BYTE*)key, DRBG_KEY_SIZE_BITS, &localKeySchedule) != 0)
{
LOG_FAILURE(FATAL_ERROR_INTERNAL);
return FALSE;
}
keySchedule = &localKeySchedule;
}
// Encrypt the temp value
EncryptDRBG(temp, sizeof(DRBG_SEED), keySchedule, iv, drbgState->lastValue);
if(providedData != NULL)
{
BYTE* pP = (BYTE*)providedData;
for(i = DRBG_SEED_SIZE_BYTES; i != 0; i--)
*temp++ ^= *pP++;
}
// Since temp points to the input key and IV, we are done and
// don't need to copy the resulting 'temp' to drbgState->seed
return TRUE;
}
//*** DRBG_Reseed()
// This function is used when reseeding of the DRBG is required. If
// entropy is provided, it is used in lieu of using hardware entropy.
// Note: the provided entropy must be the required size.
//
// Return Type: BOOL
// TRUE(1) reseed succeeded
// FALSE(0) reseed failed, probably due to the entropy generation
BOOL DRBG_Reseed(DRBG_STATE* drbgState, // IN: the state to update
DRBG_SEED* providedEntropy, // IN: entropy
DRBG_SEED* additionalData // IN:
)
{
DRBG_SEED seed;
pAssert((drbgState != NULL) && (drbgState->magic == DRBG_MAGIC));
if(providedEntropy == NULL)
{
providedEntropy = &seed;
if(!DRBG_GetEntropy(sizeof(DRBG_SEED), (BYTE*)providedEntropy))
return FALSE;
}
if(additionalData != NULL)
{
unsigned int i;
// XOR the provided data into the provided entropy
for(i = 0; i < sizeof(DRBG_SEED); i++)
((BYTE*)providedEntropy)[i] ^= ((BYTE*)additionalData)[i];
}
DRBG_Update(drbgState, NULL, providedEntropy);
drbgState->reseedCounter = 1;
return TRUE;
}
//*** DRBG_SelfTest()
// This is run when the DRBG is instantiated and at startup.
//
// Return Type: BOOL
// TRUE(1) test OK
// FALSE(0) test failed
BOOL DRBG_SelfTest(void)
{
BYTE buf[sizeof(DRBG_NistTestVector_Generated)];
DRBG_SEED seed;
UINT32 i;
BYTE* p;
DRBG_STATE testState;
//
pAssert(!IsSelfTest());
SetSelfTest();
SetDrbgTested();
// Do an instantiate
if(!DRBG_Instantiate(&testState, 0, NULL))
return FALSE;
#if DRBG_DEBUG_PRINT
dbgDumpMemBlock(
pDRBG_KEY(&testState), DRBG_KEY_SIZE_BYTES, "Key after Instantiate");
dbgDumpMemBlock(
pDRBG_IV(&testState), DRBG_IV_SIZE_BYTES, "Value after Instantiate");
#endif
if(DRBG_Generate((RAND_STATE*)&testState, buf, sizeof(buf)) == 0)
return FALSE;
#if DRBG_DEBUG_PRINT
dbgDumpMemBlock(
pDRBG_KEY(&testState.seed), DRBG_KEY_SIZE_BYTES, "Key after 1st Generate");
dbgDumpMemBlock(
pDRBG_IV(&testState.seed), DRBG_IV_SIZE_BYTES, "Value after 1st Generate");
#endif
if(memcmp(buf, DRBG_NistTestVector_GeneratedInterm, sizeof(buf)) != 0)
return FALSE;
memcpy(seed.bytes, DRBG_NistTestVector_EntropyReseed, sizeof(seed));
DRBG_Reseed(&testState, &seed, NULL);
#if DRBG_DEBUG_PRINT
dbgDumpMemBlock((BYTE*)pDRBG_KEY(&testState.seed),
DRBG_KEY_SIZE_BYTES,
"Key after 2nd Generate");
dbgDumpMemBlock((BYTE*)pDRBG_IV(&testState.seed),
DRBG_IV_SIZE_BYTES,
"Value after 2nd Generate");
dbgDumpMemBlock(buf, sizeof(buf), "2nd Generated");
#endif
if(DRBG_Generate((RAND_STATE*)&testState, buf, sizeof(buf)) == 0)
return FALSE;
if(memcmp(buf, DRBG_NistTestVector_Generated, sizeof(buf)) != 0)
return FALSE;
ClearSelfTest();
DRBG_Uninstantiate(&testState);
for(p = (BYTE*)&testState, i = 0; i < sizeof(DRBG_STATE); i++)
{
if(*p++)
return FALSE;
}
// Simulate hardware failure to make sure that we get an error when
// trying to instantiate
SetEntropyBad();
if(DRBG_Instantiate(&testState, 0, NULL))
return FALSE;
ClearEntropyBad();
return TRUE;
}
//** Public Interface
//*** Description
// The functions in this section are the interface to the RNG. These
// are the functions that are used by TPM.lib.
//*** CryptRandomStir()
// This function is used to cause a reseed. A DRBG_SEED amount of entropy is
// collected from the hardware and then additional data is added.
//
// Return Type: TPM_RC
// TPM_RC_NO_RESULT failure of the entropy generator
LIB_EXPORT TPM_RC CryptRandomStir(UINT16 additionalDataSize, BYTE* additionalData)
{
#if !USE_DEBUG_RNG
DRBG_SEED tmpBuf;
DRBG_SEED dfResult;
//
// All reseed with outside data starts with a buffer full of entropy
if(!DRBG_GetEntropy(sizeof(tmpBuf), (BYTE*)&tmpBuf))
return TPM_RC_NO_RESULT;
DRBG_Reseed(&drbgDefault,
&tmpBuf,
DfBuffer(&dfResult, additionalDataSize, additionalData));
drbgDefault.reseedCounter = 1;
return TPM_RC_SUCCESS;
#else
// If doing debug, use the input data as the initial setting for the RNG state
// so that the test can be reset at any time.
// Note: If this is called with a data size of 0 or less, nothing happens. The
// presumption is that, in a debug environment, the caller will have specific
// values for initialization, so this check is just a simple way to prevent
// inadvertent programming errors from screwing things up. This doesn't use an
// pAssert() because the non-debug version of this function will accept these
// parameters as meaning that there is no additionalData and only hardware
// entropy is used.
if((additionalDataSize > 0) && (additionalData != NULL))
{
memset(drbgDefault.seed.bytes, 0, sizeof(drbgDefault.seed.bytes));
memcpy(drbgDefault.seed.bytes,
additionalData,
MIN(additionalDataSize, sizeof(drbgDefault.seed.bytes)));
}
drbgDefault.reseedCounter = 1;
return TPM_RC_SUCCESS;
#endif
}
//*** CryptRandomGenerate()
// Generate a 'randomSize' number or random bytes.
LIB_EXPORT UINT16 CryptRandomGenerate(UINT16 randomSize, BYTE* buffer)
{
return DRBG_Generate((RAND_STATE*)&drbgDefault, buffer, randomSize);
}
//*** DRBG_InstantiateSeededKdf()
// This function is used to instantiate a KDF-based RNG. This is used for derivations.
// This function always returns TRUE.
LIB_EXPORT BOOL DRBG_InstantiateSeededKdf(
KDF_STATE* state, // OUT: buffer to hold the state
TPM_ALG_ID hashAlg, // IN: hash algorithm
TPM_ALG_ID kdf, // IN: the KDF to use
TPM2B* seed, // IN: the seed to use
const TPM2B* label, // IN: a label for the generation process.
TPM2B* context, // IN: the context value
UINT32 limit // IN: Maximum number of bits from the KDF
)
{
state->magic = KDF_MAGIC;
state->limit = limit;
state->seed = seed;
state->hash = hashAlg;
state->kdf = kdf;
state->label = label;
state->context = context;
state->digestSize = CryptHashGetDigestSize(hashAlg);
state->counter = 0;
state->residual.t.size = 0;
return TRUE;
}
//*** DRBG_AdditionalData()
// Function to reseed the DRBG with additional entropy. This is normally called
// before computing the protection value of a primary key in the Endorsement
// hierarchy.
LIB_EXPORT void DRBG_AdditionalData(DRBG_STATE* drbgState, // IN:OUT state to update
TPM2B* additionalData // IN: value to incorporate
)
{
DRBG_SEED dfResult;
if(drbgState->magic == DRBG_MAGIC)
{
DfBuffer(&dfResult, additionalData->size, additionalData->buffer);
DRBG_Reseed(drbgState, &dfResult, NULL);
}
}
//*** DRBG_InstantiateSeeded()
// This function is used to instantiate a random number generator from seed values.
// The nominal use of this generator is to create sequences of pseudo-random
// numbers from a seed value.
//
// Return Type: TPM_RC
// TPM_RC_FAILURE DRBG self-test failure
LIB_EXPORT TPM_RC DRBG_InstantiateSeeded(
DRBG_STATE* drbgState, // IN/OUT: buffer to hold the state
const TPM2B* seed, // IN: the seed to use
const TPM2B* purpose, // IN: a label for the generation process.
const TPM2B* name, // IN: name of the object
const TPM2B* additional // IN: additional data
)
{
DF_STATE dfState;
int totalInputSize;
// DRBG should have been tested, but...
if(!IsDrbgTested() && !DRBG_SelfTest())
{
LOG_FAILURE(FATAL_ERROR_SELF_TEST);
return TPM_RC_FAILURE;
}
// Initialize the DRBG state
memset(drbgState, 0, sizeof(DRBG_STATE));
drbgState->magic = DRBG_MAGIC;
// Size all of the values
totalInputSize = (seed != NULL) ? seed->size : 0;
totalInputSize += (purpose != NULL) ? purpose->size : 0;
totalInputSize += (name != NULL) ? name->size : 0;
totalInputSize += (additional != NULL) ? additional->size : 0;
// Initialize the derivation
DfStart(&dfState, totalInputSize);
// Run all the input strings through the derivation function
if(seed != NULL)
DfUpdate(&dfState, seed->size, seed->buffer);
if(purpose != NULL)
DfUpdate(&dfState, purpose->size, purpose->buffer);
if(name != NULL)
DfUpdate(&dfState, name->size, name->buffer);
if(additional != NULL)
DfUpdate(&dfState, additional->size, additional->buffer);
// Used the derivation function output as the "entropy" input. This is not
// how it is described in SP800-90A but this is the equivalent function
DRBG_Reseed(((DRBG_STATE*)drbgState), DfEnd(&dfState), NULL);
return TPM_RC_SUCCESS;
}
//*** CryptRandStartup()
// This function is called when TPM_Startup is executed. This function always returns
// TRUE.
LIB_EXPORT BOOL CryptRandStartup(void)
{
#if !_DRBG_STATE_SAVE
// If not saved in NV, re-instantiate on each startup
return DRBG_Instantiate(&drbgDefault, 0, NULL);
#else
// If the running state is saved in NV, NV has to be loaded before it can
// be updated
if(go.drbgState.magic == DRBG_MAGIC)
return DRBG_Reseed(&go.drbgState, NULL, NULL);
else
return DRBG_Instantiate(&go.drbgState, 0, NULL);
#endif
}
//*** CryptRandInit()
// This function is called when _TPM_Init is being processed.
//
// Return Type: BOOL
// TRUE(1) success
// FALSE(0) failure
LIB_EXPORT BOOL CryptRandInit(void)
{
#if !USE_DEBUG_RNG
_plat__GetEntropy(NULL, 0);
#endif
return DRBG_SelfTest();
}
//*** DRBG_Generate()
// This function generates a random sequence according SP800-90A.
// If 'random' is not NULL, then 'randomSize' bytes of random values are generated.
// If 'random' is NULL or 'randomSize' is zero, then the function returns
// zero without generating any bits or updating the reseed counter.
// This function returns the number of bytes produced which could be less than the
// number requested if the request is too large ("too large" is implementation
// dependent.)
LIB_EXPORT UINT16 DRBG_Generate(
RAND_STATE* state,
BYTE* random, // OUT: buffer to receive the random values
UINT16 randomSize // IN: the number of bytes to generate
)
{
if(state == NULL)
state = (RAND_STATE*)&drbgDefault;
if(random == NULL)
return 0;
// If the caller used a KDF state, generate a sequence from the KDF not to
// exceed the limit.
if(state->kdf.magic == KDF_MAGIC)
{
KDF_STATE* kdf = (KDF_STATE*)state;
UINT32 counter = (UINT32)kdf->counter;
INT32 bytesLeft = randomSize;
//
// If the number of bytes to be returned would put the generator
// over the limit, then return 0
if((((kdf->counter * kdf->digestSize) + randomSize) * 8) > kdf->limit)
return 0;
// Process partial and full blocks until all requested bytes provided
while(bytesLeft > 0)
{
// If there is any residual data in the buffer, copy it to the output
// buffer
if(kdf->residual.t.size > 0)
{
INT32 size;
//
// Don't use more of the residual than will fit or more than are
// available
size = MIN(kdf->residual.t.size, bytesLeft);
// Copy some or all of the residual to the output. The residual is
// at the end of the buffer. The residual might be a full buffer.
MemoryCopy(
random,
&kdf->residual.t.buffer[kdf->digestSize - kdf->residual.t.size],
size);
// Advance the buffer pointer
random += size;
// Reduce the number of bytes left to get
bytesLeft -= size;
// And reduce the residual size appropriately
kdf->residual.t.size -= (UINT16)size;
}
else
{
UINT16 blocks = (UINT16)(bytesLeft / kdf->digestSize);
//
// Get the number of required full blocks
if(blocks > 0)
{
UINT16 size = blocks * kdf->digestSize;
// Get some number of full blocks and put them in the return buffer
CryptKDFa(kdf->hash,
kdf->seed,
kdf->label,
kdf->context,
NULL,
kdf->limit,
random,
&counter,
blocks);
// reduce the size remaining to be moved and advance the pointer
bytesLeft -= size;
random += size;
}
else
{
// Fill the residual buffer with a full block and then loop to
// top to get part of it copied to the output.
kdf->residual.t.size = CryptKDFa(kdf->hash,
kdf->seed,
kdf->label,
kdf->context,
NULL,
kdf->limit,
kdf->residual.t.buffer,
&counter,
1);
}
}
}
kdf->counter = counter;
return randomSize;
}
else if(state->drbg.magic == DRBG_MAGIC)
{
DRBG_STATE* drbgState = (DRBG_STATE*)state;
DRBG_KEY_SCHEDULE keySchedule;
DRBG_SEED* seed = &drbgState->seed;
if(drbgState->reseedCounter >= CTR_DRBG_MAX_REQUESTS_PER_RESEED)
{
if(drbgState == &drbgDefault)
{
DRBG_Reseed(drbgState, NULL, NULL);
if(IsEntropyBad() && !IsSelfTest())
return 0;
}
else
{
// If this is a PRNG then the only way to get
// here is if the SW has run away.
LOG_FAILURE(FATAL_ERROR_INTERNAL);
return 0;
}
}
// if the allowed number of bytes in a request is larger than the
// less than the number of bytes that can be requested, then check
#if UINT16_MAX >= CTR_DRBG_MAX_BYTES_PER_REQUEST
if(randomSize > CTR_DRBG_MAX_BYTES_PER_REQUEST)
randomSize = CTR_DRBG_MAX_BYTES_PER_REQUEST;
#endif
// Create encryption schedule
if(DRBG_ENCRYPT_SETUP(
(BYTE*)pDRBG_KEY(seed), DRBG_KEY_SIZE_BITS, &keySchedule)
!= 0)
{
LOG_FAILURE(FATAL_ERROR_INTERNAL);
return 0;
}
// Generate the random data
EncryptDRBG(
random, randomSize, &keySchedule, pDRBG_IV(seed), drbgState->lastValue);
// Do a key update
DRBG_Update(drbgState, &keySchedule, NULL);
// Increment the reseed counter
drbgState->reseedCounter += 1;
}
else
{
LOG_FAILURE(FATAL_ERROR_INTERNAL);
return FALSE;
}
return randomSize;
}
//*** DRBG_Instantiate()
// This is CTR_DRBG_Instantiate_algorithm() from [SP 800-90A 10.2.1.3.1].
// This is called when a the TPM DRBG is to be instantiated. This is
// called to instantiate a DRBG used by the TPM for normal
// operations.
//
// Return Type: BOOL
// TRUE(1) instantiation succeeded
// FALSE(0) instantiation failed
LIB_EXPORT BOOL DRBG_Instantiate(
DRBG_STATE* drbgState, // OUT: the instantiated value
UINT16 pSize, // IN: Size of personalization string
BYTE* personalization // IN: The personalization string
)
{
DRBG_SEED seed;
DRBG_SEED dfResult;
//
pAssert((pSize == 0) || (pSize <= sizeof(seed)) || (personalization != NULL));
// If the DRBG has not been tested, test when doing an instantiation. Since
// Instantiation is called during self test, make sure we don't get stuck in a
// loop.
if(!IsDrbgTested() && !IsSelfTest() && !DRBG_SelfTest())
return FALSE;
// If doing a self test, DRBG_GetEntropy will return the NIST
// test vector value.
if(!DRBG_GetEntropy(sizeof(seed), (BYTE*)&seed))
return FALSE;
// set everything to zero
memset(drbgState, 0, sizeof(DRBG_STATE));
drbgState->magic = DRBG_MAGIC;
// Steps 1, 2, 3, 6, 7 of SP 800-90A 10.2.1.3.1 are exactly what
// reseeding does. So, do a reduction on the personalization value (if any)
// and do a reseed.
DRBG_Reseed(drbgState, &seed, DfBuffer(&dfResult, pSize, personalization));
return TRUE;
}
//*** DRBG_Uninstantiate()
// This is Uninstantiate_function() from [SP 800-90A 9.4].
//
// Return Type: TPM_RC
// TPM_RC_VALUE not a valid state
LIB_EXPORT TPM_RC DRBG_Uninstantiate(
DRBG_STATE* drbgState // IN/OUT: working state to erase
)
{
if((drbgState == NULL) || (drbgState->magic != DRBG_MAGIC))
return TPM_RC_VALUE;
memset(drbgState, 0, sizeof(DRBG_STATE));
return TPM_RC_SUCCESS;
}