-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_network.py
112 lines (78 loc) · 3.74 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import load_model
class ReplayBuffer():
def __init__(self, max_size, input_dims):
self.mem_size = max_size
self.mem_cntr = 0
self.state_memory = np.zeros((self.mem_size, *input_dims),
dtype=np.float32)
self.new_state_memory = np.zeros((self.mem_size, *input_dims),
dtype=np.float32)
self.action_memory = np.zeros(self.mem_size, dtype=np.int32)
self.reward_memory = np.zeros(self.mem_size, dtype=np.float32)
self.terminal_memory = np.zeros(self.mem_size, dtype=np.int32)
def store_transition(self, state, action, reward, state_, done):
index = self.mem_cntr % self.mem_size
self.state_memory[index] = state
self.new_state_memory[index] = state_
self.reward_memory[index] = reward
self.action_memory[index] = action
self.terminal_memory[index] = 1 - int(done)
self.mem_cntr += 1
def sample_buffer(self, batch_size):
max_mem = min(self.mem_cntr, self.mem_size)
batch = np.random.choice(max_mem, batch_size, replace=False)
states = self.state_memory[batch]
states_ = self.new_state_memory[batch]
rewards = self.reward_memory[batch]
actions = self.action_memory[batch]
terminal = self.terminal_memory[batch]
return states, actions, rewards, states_, terminal
def build_dqn(lr, n_actions, input_dims, fc1_dims, fc2_dims):
model = keras.Sequential([
keras.layers.Dense(fc1_dims, activation='relu'),
keras.layers.Dense(fc2_dims, activation='relu'),
keras.layers.Dense(n_actions, activation=None)])
model.compile(optimizer='adam', loss='mean_squared_error')
return model
class Agent():
def __init__(self, lr, gamma, n_actions, epsilon, batch_size,
input_dims, epsilon_dec=0.9, epsilon_min=0.01,
mem_size=1000000, fname='dqn_model.h5'):
self.action_space = [i for i in range(n_actions)]
self.gamma = gamma
self.epsilon = epsilon
self.eps_dec = epsilon_dec
self.eps_min = epsilon_min
self.batch_size = batch_size
self.model_file = fname
self.memory = ReplayBuffer(mem_size, input_dims)
self.q_eval = build_dqn(lr, n_actions, input_dims, 256, 256)
def store_transition(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def choose_action(self, observation):
if np.random.random() < self.epsilon:
action = np.random.choice(self.action_space)
else:
state = np.array([observation])
actions = self.q_eval.predict(state)
action = np.argmax(actions)
return action
def learn(self):
if self.memory.mem_cntr < self.batch_size:
return
states, actions, rewards, states_, dones = self.memory.sample_buffer(self.batch_size)
q_eval = self.q_eval.predict(states)
q_next = self.q_eval.predict(states_)
q_target = np.copy(q_eval)
batch_index = np.arange(self.batch_size, dtype=np.int32)
q_target[batch_index, actions] = rewards + self.gamma * np.max(q_next, axis=1)*dones
self.q_eval.train_on_batch(states, q_target)
self.epsilon = self.epsilon - self.eps_dec if self.epsilon > \
self.eps_min else self.eps_min
def save_model(self):
self.q_eval.save(self.model_file)
def load_model(self):
self.q_eval = load_model(self.model_file)