-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeo.py
144 lines (111 loc) · 3.51 KB
/
geo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# -*- coding: utf-8 -*-
# @Author: wuzida
# @Date: 2018-12-28 15:20:54
# @Last Modified by: wuzida
# @Last Modified time: 2018-12-29 16:49:16
import math
a = 6378137
b = 6356752.3142
f = (a - b) / a
e_sq = f * (2-f)
pi = 3.14159265359
def geodetic_to_ecef(lat, lon, h):
# (lat, lon) in degrees
# h in meters
lamb = math.radians(lat)
phi = math.radians(lon)
s = math.sin(lamb)
N = a / math.sqrt(1 - e_sq * s * s)
sin_lambda = math.sin(lamb)
cos_lambda = math.cos(lamb)
sin_phi = math.sin(phi)
cos_phi = math.cos(phi)
x = (h + N) * cos_lambda * cos_phi
y = (h + N) * cos_lambda * sin_phi
z = (h + (1 - e_sq) * N) * sin_lambda
return x, y, z
def ecef_to_enu(x, y, z, lat0, lon0, h0):
lamb = math.radians(lat0)
phi = math.radians(lon0)
s = math.sin(lamb)
N = a / math.sqrt(1 - e_sq * s * s)
sin_lambda = math.sin(lamb)
cos_lambda = math.cos(lamb)
sin_phi = math.sin(phi)
cos_phi = math.cos(phi)
x0 = (h0 + N) * cos_lambda * cos_phi
y0 = (h0 + N) * cos_lambda * sin_phi
z0 = (h0 + (1 - e_sq) * N) * sin_lambda
xd = x - x0
yd = y - y0
zd = z - z0
t = -cos_phi * xd - sin_phi * yd
xEast = -sin_phi * xd + cos_phi * yd
yNorth = t * sin_lambda + cos_lambda * zd
zUp = cos_lambda * cos_phi * xd + cos_lambda * sin_phi * yd + sin_lambda * zd
return xEast, yNorth, zUp
def enu_to_ecef(xEast, yNorth, zUp, lat0, lon0, h0):
lamb = math.radians(lat0)
phi = math.radians(lon0)
s = math.sin(lamb)
N = a / math.sqrt(1 - e_sq * s * s)
sin_lambda = math.sin(lamb)
cos_lambda = math.cos(lamb)
sin_phi = math.sin(phi)
cos_phi = math.cos(phi)
x0 = (h0 + N) * cos_lambda * cos_phi
y0 = (h0 + N) * cos_lambda * sin_phi
z0 = (h0 + (1 - e_sq) * N) * sin_lambda
t = cos_lambda * zUp - sin_lambda * yNorth
zd = sin_lambda * zUp + cos_lambda * yNorth
xd = cos_phi * t - sin_phi * xEast
yd = sin_phi * t + cos_phi * xEast
x = xd + x0
y = yd + y0
z = zd + z0
return x, y, z
def ecef_to_geodetic(x, y, z):
# Convert from ECEF cartesian coordinates to
# latitude, longitude and height. WGS-84
x2 = x ** 2
y2 = y ** 2
z2 = z ** 2
a = 6378137.0000 # earth radius in meters
b = 6356752.3142 # earth semiminor in meters
e = math.sqrt (1-(b/a)**2)
b2 = b*b
e2 = e ** 2
ep = e*(a/b)
r = math.sqrt(x2+y2)
r2 = r*r
E2 = a ** 2 - b ** 2
F = 54*b2*z2
G = r2 + (1-e2)*z2 - e2*E2
c = (e2*e2*F*r2)/(G*G*G)
s = ( 1 + c + math.sqrt(c*c + 2*c) )**(1/3)
P = F / (3 * (s+1/s+1)**2 * G*G)
Q = math.sqrt(1+2*e2*e2*P)
ro = -(P*e2*r)/(1+Q) + math.sqrt((a*a/2)*(1+1/Q) - (P*(1-e2)*z2)/(Q*(1+Q)) - P*r2/2)
tmp = (r - e2*ro) ** 2
U = math.sqrt( tmp + z2 )
V = math.sqrt( tmp + (1-e2)*z2 )
zo = (b2*z)/(a*V)
height = U*( 1 - b2/(a*V) )
lat = math.atan( (z + ep*ep*zo)/r )
temp = math.atan(y/x)
if x >=0 :
long = temp
elif (x < 0) & (y >= 0):
long = pi + temp
else :
long = temp - pi
lat0 = lat/(pi/180)
lon0 = long/(pi/180)
h0 = height
return lat0, lon0, h0
def geodetic_to_enu(lat, lon, h, lat_ref, lon_ref, h_ref):
x, y, z = geodetic_to_ecef(lat, lon, h)
return ecef_to_enu(x, y, z, lat_ref, lon_ref, h_ref)
def enu_to_geodetic(xEast, yNorth, zUp, lat_ref, lon_ref, h_ref):
x,y,z = enu_to_ecef(xEast, yNorth, zUp, lat_ref, lon_ref, h_ref)
return ecef_to_geodetic(x,y,z)