This is the code for our paper Indoor Scene Generation From a Collection of Semantic-Segmented Depth Images.
- cuda 10.1
- python 3.6.8
- Other requirements are list in
requirements.txt
We provide the data processing scripts for Structured3D and Matterport3D dataset.
Download Structured3D.
├──Structured3D
├── Structured3D_bbox.zip
├── Structured3D_0.zip
├── Structured3D_1.zip
├── ...
├── Structured3D_17.zip
├── Structured3D_perspective_0.zip
├── Structured3D_perspective_1.zip
├── ...
├── Structured3D_perspective_17.zip
Download Matterport3D.
├──Matterport3D/v1/scans
├── 1LXtFkjw3qL
├── 1pXnuDYAj8r
├── ...
Configure data_dir
and out_dir
in examples/scenegen/tools/configs/DataGen-${dataset}-${type}.yaml
, where dataset
is Structured3D
or Matterport3D
, type
is one of Bedroom, Living, Kitchen
.
Run
dataset=Structured3D; # Structured3D or Matterport3D
type=Bedroom; # Bedroom, Living or Kitchen
python process.py --task data_gen --cfg_path ./examples/scenegen/tools/configs/DataGen-${dataset}-${type}.yaml
The final training data train_image.records
is stored in ${out_dir}/${label_type}/TrainViewData/
.
Configure experiment in examples/scenegen/configs/Img2vol-${dataset}-${type}.yaml
.
Run
measure=Train; # Train or Test
model_dir=./model_dir/${dataset}_${type}_model
python execute.py --example examples/scenegen --cfg_path ./examples/scenegen/configs/Img2vol-${dataset}-${type}.yaml --data_dir ${out_dir}/${label_type}/TrainViewData/ --model_dir ${model_dir} --log_dir ./log_dir/${dataset}_${type}_log --measure ${measure}
to train the model. Availabel arguments:
--cfg_path
: config file--data_dir
: path of training data--model_dir
: path to save trained model--log_dir
: path to save training log--measure
: Train or Test
The pre-trained models trained on Structured3D (bedroom, living room, kitchen) and Matterport3D (bedroom) dataset.
Dataset | type | Download |
---|---|---|
Structured3D | bedroom | ckp-Img2vol-Structured3D-Bedroom.zip |
Structured3D | living room | ckp-Img2vol-Structured3D-Living.zip |
Structured3D | kitchen | ckp-Img2vol-Structured3D-Kitchen.zip |
Matterport3D | bedroom | ckp-Img2vol-Matterport3D-Bedroom.zip |
First set measure
to Test
, and then re-run execute.py
to generate semantic scene volume from random noises.
The generated scenes data eval_meta.npz
is stored in ${model_dir}/eval/${training_epoch}
.
python process.py --task evaluation --cfg_path ./examples/scenegen/tools/configs/DataGen-${dataset}-${type}.yaml --eval_dir ${model_dir}/eval/${training_epoch}/ --output_dir ${model_dir}/eval/${training_epoch}/output/
The visualization is saved in ${model_dir}/eval/${training_epoch}/output/vis_3d
.
To generate the final 3D indoor scene by replacing each volumetric object instance in the volume with a CAD model retrieved from a 3D object database ShapeNet based on their type and volumetric shape.
First download ShapeNetCore v2 data from ShapeNet. Then run
shapenet_path=/PathToShapeNet/ShapeNetCore.v2.zip
python process.py --task retrieval --cfg_path ./examples/scenegen/tools/configs/DataGen-${dataset}-${type}.yaml --eval_dir ${model_dir}/eval/${training_epoch}/ --output_dir ${model_dir}/eval/${training_epoch}/output/ --shapenet_path ${shapenet_path}
The final generated scenes are saved in ${model_dir}/eval/${training_epoch}/output/retrieval
.
If you find our work useful for your research, please cite us using the bibtex below:
@article{yang2021indoor,
title={Indoor Scene Generation from a Collection of Semantic-Segmented Depth Images},
author={Yang, Ming-Jia and Guo, Yu-Xiao and Zhou, Bin and Tong, Xin},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021}
}