-
Notifications
You must be signed in to change notification settings - Fork 296
/
Copy pathpose_estimation_book3.cpp
106 lines (94 loc) · 5.29 KB
/
pose_estimation_book3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "opencv2/opencv.hpp"
int main()
{
const char *video_file = "../data/blais.mp4", *cover_file = "../data/blais.jpg";
size_t min_inlier_num = 100;
// Load the object image and extract features
cv::Mat obj_image = cv::imread(cover_file);
if (obj_image.empty()) return -1;
cv::Ptr<cv::FeatureDetector> fdetector = cv::ORB::create();
cv::Ptr<cv::DescriptorMatcher> fmatcher = cv::DescriptorMatcher::create("BruteForce-Hamming");
std::vector<cv::KeyPoint> obj_keypoint;
cv::Mat obj_descriptor;
fdetector->detectAndCompute(obj_image, cv::Mat(), obj_keypoint, obj_descriptor);
if (obj_keypoint.empty() || obj_descriptor.empty()) return -1;
fmatcher->add(obj_descriptor);
// Open a video
cv::VideoCapture video;
if (!video.open(video_file)) return -1;
// Prepare a box for simple AR
std::vector<cv::Point3f> box_lower = { cv::Point3f(30, 145, 0), cv::Point3f(30, 200, 0), cv::Point3f(200, 200, 0), cv::Point3f(200, 145, 0) };
std::vector<cv::Point3f> box_upper = { cv::Point3f(30, 145, -50), cv::Point3f(30, 200, -50), cv::Point3f(200, 200, -50), cv::Point3f(200, 145, -50) };
// Run pose estimation and camera calibration together
while (true)
{
// Read an image from the video
cv::Mat img;
video >> img;
if (img.empty()) break;
// Extract features and match them to the object features
std::vector<cv::KeyPoint> img_keypoint;
cv::Mat img_descriptor;
fdetector->detectAndCompute(img, cv::Mat(), img_keypoint, img_descriptor);
if (img_keypoint.empty() || img_descriptor.empty()) continue;
std::vector<cv::DMatch> match;
fmatcher->match(img_descriptor, match);
if (match.size() < min_inlier_num) continue;
std::vector<cv::Point3f> obj_points;
std::vector<cv::Point2f> obj_project, img_points;
for (auto m = match.begin(); m < match.end(); m++)
{
obj_points.push_back(cv::Point3f(obj_keypoint[m->trainIdx].pt));
obj_project.push_back(obj_keypoint[m->trainIdx].pt);
img_points.push_back(img_keypoint[m->queryIdx].pt);
}
// Determine whether each matched feature is an inlier or not
cv::Mat inlier_mask = cv::Mat::zeros(int(match.size()), 1, CV_8U);
cv::Mat H = cv::findHomography(img_points, obj_project, inlier_mask, cv::RANSAC, 2);
cv::Mat image_result;
cv::drawMatches(img, img_keypoint, obj_image, obj_keypoint, match, image_result, cv::Vec3b(0, 0, 255), cv::Vec3b(0, 127, 0), inlier_mask);
// Check whether inliers are enough or not
double f = 0;
size_t inlier_num = static_cast<size_t>(cv::sum(inlier_mask)[0]);
if (inlier_num > min_inlier_num)
{
// Calibrate the camera and estimate its pose with inliers
std::vector<cv::Point3f> obj_inlier;
std::vector<cv::Point2f> img_inlier;
for (int idx = 0; idx < inlier_mask.rows; idx++)
{
if (inlier_mask.at<uchar>(idx))
{
obj_inlier.push_back(obj_points[idx]);
img_inlier.push_back(img_points[idx]);
}
}
cv::Mat K, dist_coeff;
std::vector<cv::Mat> rvecs, tvecs;
cv::calibrateCamera(std::vector<std::vector<cv::Point3f>>(1, obj_inlier), std::vector<std::vector<cv::Point2f>>(1, img_inlier), img.size(), K, dist_coeff, rvecs, tvecs,
cv::CALIB_FIX_ASPECT_RATIO | cv::CALIB_FIX_PRINCIPAL_POINT | cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_K1 | cv::CALIB_FIX_K2 | cv::CALIB_FIX_K3 | cv::CALIB_FIX_K4 | cv::CALIB_FIX_K5 | cv::CALIB_FIX_K6 | cv::CALIB_FIX_S1_S2_S3_S4 | cv::CALIB_FIX_TAUX_TAUY);
cv::Mat rvec = rvecs[0].clone();
cv::Mat tvec = tvecs[0].clone();
f = K.at<double>(0);
// Draw the box on the image
cv::Mat line_lower, line_upper;
cv::projectPoints(box_lower, rvec, tvec, K, dist_coeff, line_lower);
cv::projectPoints(box_upper, rvec, tvec, K, dist_coeff, line_upper);
line_lower.reshape(1).convertTo(line_lower, CV_32S); // Change 4 x 1 matrix (CV_64FC2) to 4 x 2 matrix (CV_32SC1)
line_upper.reshape(1).convertTo(line_upper, CV_32S); // because 'cv::polylines()' only accepts 'CV_32S' depth.
cv::polylines(image_result, line_lower, true, cv::Vec3b(255, 0, 0), 2);
for (int i = 0; i < line_lower.rows; i++)
cv::line(image_result, cv::Point(line_lower.row(i)), cv::Point(line_upper.row(i)), cv::Vec3b(0, 255, 0), 2);
cv::polylines(image_result, line_upper, true, cv::Vec3b(0, 0, 255), 2);
}
// Show the image and process the key event
cv::String info = cv::format("Inliers: %d (%d%%), Focal Length: %.0f", inlier_num, 100 * inlier_num / match.size(), f);
cv::putText(image_result, info, cv::Point(5, 15), cv::FONT_HERSHEY_PLAIN, 1, cv::Vec3b(0, 255, 0));
cv::imshow("Pose Estimation (Book)", image_result);
int key = cv::waitKey(1);
if (key == 32) key = cv::waitKey(); // Space
if (key == 27) break; // ESC
}
video.release();
return 0;
}