-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cnn.py
780 lines (638 loc) · 31.9 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
# -*- coding: utf-8 -*-
"""
CNN training script for BLABRECS
Training this will require the following public-domain word lists:
YAWL Word list: https://github.com/elasticdog/yawl/blob/master/yawl-0.3.2.03/word.list
Letterpress wordlist: https://github.com/lorenbrichter/Words/blob/master/Words/en.txt
Moby Word list: https://www.gutenberg.org/files/3201/files/SINGLE.TXT
"""
# Commented out IPython magic to ensure Python compatibility.
import tensorflow as tf
import numpy as np
import random
import string
import math
# %load_ext tensorboard
import datetime, os
from pathlib import Path
"""For a classification, let's use Sep CNN because that's a reasonable one I found enough information about to reimplement."""
# Based on https://developers.google.com/machine-learning/guides/text-classification/step-4
from tensorflow.python.keras import models
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import Embedding
from tensorflow.python.keras.layers import Conv1D
from tensorflow.python.keras.layers import SeparableConv1D
from tensorflow.python.keras.layers import MaxPooling1D
from tensorflow.python.keras.layers import GlobalAveragePooling1D
def sepcnn_model(blocks,
filters,
kernel_size,
embedding_dim,
dropout_rate,
pool_size,
input_shape,
num_classes,
num_features,
use_pretrained_embedding=False,
is_embedding_trainable=False,
embedding_matrix=None):
"""Creates an instance of a separable CNN model.
# Arguments
blocks: int, number of pairs of sepCNN and pooling blocks in the model.
filters: int, output dimension of the layers.
kernel_size: int, length of the convolution window.
embedding_dim: int, dimension of the embedding vectors.
dropout_rate: float, percentage of input to drop at Dropout layers.
pool_size: int, factor by which to downscale input at MaxPooling layer.
input_shape: tuple, shape of input to the model.
num_classes: int, number of output classes.
num_features: int, number of words (embedding input dimension).
use_pretrained_embedding: bool, true if pre-trained embedding is on.
is_embedding_trainable: bool, true if embedding layer is trainable.
embedding_matrix: dict, dictionary with embedding coefficients.
# Returns
A sepCNN model instance.
"""
# op_units, op_activation = _get_last_layer_units_and_activation(num_classes)
op_units = 1
op_activation = 'sigmoid'
activation_func = 'relu'
#op_units = num_classes
#op_activation = 'softmax'
model = models.Sequential()
# Add embedding layer. If pre-trained embedding is used add weights to the
# embeddings layer and set trainable to input is_embedding_trainable flag.
if use_pretrained_embedding:
model.add(Embedding(input_dim=num_features,
output_dim=embedding_dim,
input_length=input_shape[0],
weights=[embedding_matrix],
trainable=is_embedding_trainable))
else:
model.add(Embedding(input_dim=num_features,
output_dim=embedding_dim,
input_length=input_shape[0]))
for _ in range(blocks-1):
model.add(Dropout(rate=dropout_rate))
model.add(SeparableConv1D(filters=filters,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
depthwise_initializer='random_uniform',
padding='same'))
model.add(SeparableConv1D(filters=filters,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
depthwise_initializer='random_uniform',
padding='same'))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(SeparableConv1D(filters=filters * 2,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
depthwise_initializer='random_uniform',
padding='same'))
model.add(SeparableConv1D(filters=filters * 2,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
depthwise_initializer='random_uniform',
padding='same'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(op_units, activation=op_activation))
return model
# Tensorflow JS doesn't support SeparableConv1D layers yet,
# so we'll just turn it into a CNN instead of a SepCNN
def non_sepcnn_model(blocks,
filters,
kernel_size,
embedding_dim,
dropout_rate,
pool_size,
input_shape,
num_classes,
num_features,
use_pretrained_embedding=False,
is_embedding_trainable=False,
embedding_matrix=None):
"""Creates an instance of a non-separable CNN model.
# Arguments
blocks: int, number of pairs of sepCNN and pooling blocks in the model.
filters: int, output dimension of the layers.
kernel_size: int, length of the convolution window.
embedding_dim: int, dimension of the embedding vectors.
dropout_rate: float, percentage of input to drop at Dropout layers.
pool_size: int, factor by which to downscale input at MaxPooling layer.
input_shape: tuple, shape of input to the model.
num_classes: int, number of output classes.
num_features: int, number of words (embedding input dimension).
use_pretrained_embedding: bool, true if pre-trained embedding is on.
is_embedding_trainable: bool, true if embedding layer is trainable.
embedding_matrix: dict, dictionary with embedding coefficients.
# Returns
A sepCNN model instance.
"""
# op_units, op_activation = _get_last_layer_units_and_activation(num_classes)
op_units = 1
op_activation = 'sigmoid'
activation_func = 'relu'
#op_units = num_classes
#op_activation = 'softmax'
model = models.Sequential()
# Add embedding layer. If pre-trained embedding is used add weights to the
# embeddings layer and set trainable to input is_embedding_trainable flag.
if use_pretrained_embedding:
model.add(Embedding(input_dim=num_features,
output_dim=embedding_dim,
input_length=input_shape[0],
weights=[embedding_matrix],
trainable=is_embedding_trainable))
else:
model.add(Embedding(input_dim=num_features,
output_dim=embedding_dim,
input_length=input_shape[0]))
for _ in range(blocks-1):
model.add(Dropout(rate=dropout_rate))
model.add(Conv1D(filters=filters,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
padding='same'))
model.add(Conv1D(filters=filters,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
padding='same'))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(Conv1D(filters=filters * 2,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
padding='same'))
model.add(Conv1D(filters=filters * 2,
kernel_size=kernel_size,
activation=activation_func,
bias_initializer='random_uniform',
padding='same'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(op_units, activation=op_activation))
return model
seed = 6890;
random.seed(seed);
def loadData(filename):
data = ""
with open(filename, 'r') as f:
data = f.read()
data = data.split("\n")
return [d.lower() for d in data if ((len(d) >= 3) and (len(d) <= 24))]
def loadPrelimData(filename):
data = ""
Path(filename).touch()
with open(filename, 'r') as f:
data = f.read()
data = data.split("\n")
data_list = list(filter(None, data))
assert(len(data_list) > 0)
return data_list
english_length_frequency = {9: 61602, 8: 59066, 10: 57133, 7: 47814, 11: 47480, 12: 36960, 6: 33362, 13: 26716, 14: 18445, 5: 17785, 15: 11902, 4: 7724, 16: 6954, 17: 3996, 3: 2244, 18: 2120, 19: 1109, 20: 532, 21: 236, 22: 104, 23: 46, 24: 25}
elf_probability = [english_length_frequency[n] for n in sorted(english_length_frequency)]
english_letters = {'e': 467768, 'i': 383297, 's': 357658, 'a': 340401, 'n': 303655, 'o': 303480, 'r': 298272, 't': 282172, 'l': 229025, 'c': 179481, 'u': 153098, 'p': 136546, 'd': 135605, 'm': 126065, 'h': 110164, 'g': 105274, 'y': 78283, 'b': 77576, 'f': 48176, 'v': 39965, 'k': 34437, 'w': 28496, 'z': 18893, 'x': 12318, 'q': 7062, 'j': 6461, "'": 3866, '/': 21, '"': 6, '1': 3, '0': 3, '8': 2, '3': 1, '7': 1, '4': 1, '5': 1, '6': 1, '2': 1, '9': 1}
elet_chars = list(english_letters.keys())
elet_frequency = [english_letters[n] for n in english_letters.keys()]
"""Generate a random string of lowercase letters that is between 3 and 24 characters long. There's a slight chance this will still generate an actual dictionary word, so include an optional way to filter those out. (Which is slow, so the actual function call below uses sets instead.)"""
def generateWord(forbid_list, depth=0, random_dist='english_table', letter_dist='random'):
#letters = "abcdefghijklmnopqrstuvwxyz"
word_length = 12
word_length_max = 24
if random_dist == 'biased':
word_length = 3 + math.floor(abs(random.normalvariate(0, 21)))
if random_dist == 'triangle':
word_length = 3 + math.floor(21.0 * abs(random.triangular(0,1,0)))
if random_dist == 'uniform':
word_length = random.randint(3,24)
if random_dist == 'gauss':
word_length = 3 + math.floor(21.0 * abs(random.gauss(0,0.2)))
if random_dist == 'beta':
word_length = 3 + math.floor(21.0 * abs(random.betavariate(1,3)))
if random_dist == 'english_table':
word_length = random.choices(list(sorted(english_length_frequency)), weights=elf_probability)[0]
gen_word = ''
if letter_dist == 'random':
gen_word = ''.join(random.choice(string.ascii_lowercase) for _ in range(word_length))
if letter_dist == 'english':
gen_word = ''.join(random.choices(elet_chars, elet_frequency)[0] for _ in range(word_length))
if None != forbid_list:
if gen_word in forbid_list:
if depth > 4:
print(depth)
gen_word = generateWord(forbid_list, depth+1, random_dist=random_dist, letter_dist=letter_dist)
return gen_word
"""You'd think that generating random pronouncable words would be useful, but this is actually a late addition, so the only thing it's being used for right now is testing the final model."""
#!pip install pronounceable
from pronounceable import PronounceableWord, generate_word
def generatePronounceableWord(forbid_list, depth=0, just_gen = False):
gen_word = PronounceableWord().length(3, 24)
if just_gen:
gen_word = generate_word()
if None != forbid_list:
if gen_word in forbid_list:
if depth > 4:
print(depth)
gen_word = generatePronounceableWord(forbid_list, depth+1)
return gen_word
[print(generatePronounceableWord(None)) for i in range(10)]
"""OK, here's the big data pre-processing step. Load our word lists, generate some fake words, label them both, etc.
Later on this should probably get changed to use cross-validation or something.
"""
def saveTextData(tdata, fname):
with open(fname, "w") as txt_file:
for line in tdata:
txt_file.write(line + "\n")
#txt_file.write(" ".join(line) + "\n")
from collections import Counter
def wordStats(wlist):
w_lens = [len(a) for a in wlist]
print("Word Lengths:")
print(Counter(w_lens))
wchars = sum([Counter(a) for a in wlist], Counter())
print("Character Frequency:")
print(wchars)
def makeUpSomeWords(random_dist='english_table', char_list='random'):
seed = 26890
data_size = 336000 # size for training
validation_size = 84000 # size for validation
test_data_size = 20000 # size for testing afterwards
fake_words_multiplier = 6 # I'm not sure that it's a good idea to have so much more false examples compared to real examples, but it is more data...
# YAWL Word list: yawl-0.3.2.03/word.list
wordlist_1 = loadData("word.list")
# Letterpress wordlist: Words/en.txt
wordlist_2 = loadData("letterpress_en.txt")
# Moby Word list: https://www.gutenberg.org/files/3201/files/SINGLE.TXT
wordlist_3 = loadData("SINGLE.TXT")
print("Loaded Words")
wordlist = list(set(wordlist_1 + wordlist_2 + wordlist_3))
print("Unique-ify Words")
random.seed(seed)
random.shuffle(wordlist)
print("Wordlist shuffled: " + str(len(wordlist)))
print(f"Using {(data_size + validation_size + test_data_size)} words.")
print("Data ratio: " + str((data_size + validation_size + test_data_size) / len(wordlist)))
print(wordlist[:100])
wordStats(wordlist)
print("Making up some words...")
fakewords = [generateWord(None, random_dist=random_dist, letter_dist=char_list) for n in range(data_size * fake_words_multiplier)]
print("Fake words!")
morefakewords = [generateWord(None, random_dist=random_dist, letter_dist=char_list) for n in range(validation_size * fake_words_multiplier)]
print("More fake words!")
evenmorefakewords = [generateWord(None, random_dist=random_dist, letter_dist='english') for n in range(test_data_size)]
print("Even more fake words!")
print("Words generated: " + str(len(fakewords) + len(morefakewords) + len(evenmorefakewords)))
fake_lengths = [len(fakewords), len(morefakewords), len(evenmorefakewords)]
print(fake_lengths)
print("uniquify generated words...")
fakewords = list(set(fakewords) - set(wordlist))
morefakewords = list(set(morefakewords) - set(wordlist))
evenmorefakewords = list(set(evenmorefakewords) - set(wordlist))
print("...done. Removed words:")
print(f"1: {fake_lengths[0] - len(fakewords)}")
print(f"2: {fake_lengths[1] - len(morefakewords)}")
print(f"3: {fake_lengths[2] - len(evenmorefakewords)}")
print([len(fakewords), len(morefakewords), len(evenmorefakewords)])
train_data = wordlist[:data_size] + fakewords
train_labels = [True for n in range(data_size)] + [False for n in fakewords]
valid_data = wordlist[data_size:data_size + validation_size] + morefakewords
valid_labels = [True for n in range(validation_size)] + [False for n in morefakewords]
test_data = wordlist[data_size + validation_size:data_size + validation_size + test_data_size] + evenmorefakewords
test_labels = [True for n in range(test_data_size)] + [False for n in evenmorefakewords]
print("Labels made")
seed = 26890
random.seed(seed)
random.shuffle(train_data)
random.seed(seed)
random.shuffle(train_labels)
random.seed(seed)
random.shuffle(test_data)
random.seed(seed)
random.shuffle(test_labels)
random.seed(seed)
random.shuffle(valid_data)
random.seed(seed)
random.shuffle(valid_labels)
print("Datasets shuffled")
train_dataset = [train_data, np.array(train_labels, dtype=bool)]
valid_dataset = [valid_data, np.array(valid_labels, dtype=bool)]
test_dataset = [test_data, np.array(test_labels, dtype=bool)]
saveTextData(train_data, f"data_training_{random_dist}_{char_list}.txt")
saveTextData(valid_data, f"data_validation_{random_dist}_{char_list}.txt")
saveTextData(test_data, f"data_testing_{random_dist}_{char_list}.txt")
np.savetxt(f"data_labels_train_{random_dist}_{char_list}.txt", train_dataset[1])
np.savetxt(f"data_labels_valid_{random_dist}_{char_list}.txt", valid_dataset[1])
np.savetxt(f"data_labels_test_{random_dist}_{char_list}.txt", test_dataset[1])
print("Datsets written")
print(f"Loading data_training_{random_dist}_{char_list}.txt")
l_train_data = loadPrelimData(f"data_training_{random_dist}_{char_list}.txt")
print([len(l_train_data), len(train_data)])
match_sum = sum([l_train_data[i] == train_data[i] for i in range(len(l_train_data))])
print(match_sum)
print(len(train_data))
assert(match_sum == len(train_data))
dist_type = 'english_table'
letter_dist = 'english'
#dist_type = 'triangle'
#letter_dist = 'random'
generate_new_words = True
if generate_new_words:
makeUpSomeWords(random_dist = dist_type, char_list = letter_dist)
"""Because the pre-processing can take a while, we save it to disk above and then reload it here. (It's better to have the save-and-load process run all of the time so we can make sure it behaves identically in either case.)"""
l_train_data = loadPrelimData(f"data_training_{dist_type}_{letter_dist}.txt")
l_train_labels = [(i[0] == '1') for i in loadPrelimData(f"data_labels_train_{dist_type}_{letter_dist}.txt")]
l_valid_data = loadPrelimData(f"data_validation_{dist_type}_{letter_dist}.txt")
l_valid_labels = [(i[0] == '1') for i in loadPrelimData(f"data_labels_valid_{dist_type}_{letter_dist}.txt")]
l_test_data = loadPrelimData(f"data_testing_{dist_type}_{letter_dist}.txt")
l_test_labels = [(i[0] == '1') for i in loadPrelimData(f"data_labels_test_{dist_type}_{letter_dist}.txt")]
train_dataset = [l_train_data, np.array(l_train_labels, dtype=bool)]
valid_dataset = [l_valid_data, np.array(l_valid_labels, dtype=bool)]
test_dataset = [l_test_data, np.array(l_test_labels, dtype=bool)]
from tensorflow.python.keras.preprocessing import sequence
from tensorflow.python.keras.preprocessing import text
TOKEN_MODE = 'char'
TOP_K = 36
MAX_WORD_LENGTH = 24
def vectorize_data(training_text, validation_text, test_text):
glyphs = " abcdefghijklmnopqrstuvwxyz"
#trn = [' '.join([j for j in i]) for i in training_text]
#val = [' '.join([j for j in i]) for i in validation_text]
tokenizer = text.Tokenizer(lower=True, char_level=True, oov_token='@')
tokenizer.fit_on_texts(training_text + validation_text + test_text)
train = tokenizer.texts_to_sequences(training_text)
validate = tokenizer.texts_to_sequences(validation_text)
testing = tokenizer.texts_to_sequences(test_text)
glyph_dictionary = tokenizer.word_index
train = sequence.pad_sequences(train, maxlen=MAX_WORD_LENGTH, padding='post')
validate = sequence.pad_sequences(validate, maxlen=MAX_WORD_LENGTH, padding='post')
testing = sequence.pad_sequences(testing, maxlen=MAX_WORD_LENGTH, padding='post')
return train, validate, testing, glyph_dictionary, tokenizer
#[' '.join([j for j in i]) for i in ["test", "strings to process"]]
#vectorize_data(["twenty one", "thirty two", "three"], ["able alpha", "baker beta", "charlie gamma"], ["test"])
train, valid, test, character_index, character_tokenizer = vectorize_data(train_dataset[0], valid_dataset[0], test_dataset[0])
print(character_index)
print(len(character_index))
with open(f"tokenizer_{dist_type}_{letter_dist}.txt", "w") as f:
f.write(str(character_index))
def train_model(model_name = "spell_words",
blocks = 3,
filters = 64,
dropout_rate = 0.3,
embedding_dim = 200,
kernel_size = 3,
pool_size = 3,
epochs = 250,
batch_size = 512,
patience=15,
loss = 'binary_crossentropy',
learning_rate = 1e-3):
num_classes = 2, # binary classification
num_features = len(character_index) + 1 # maximum number of letters
batch_size = batch_size# * (64)
model = non_sepcnn_model(blocks=blocks,
filters=filters,
kernel_size=kernel_size,
embedding_dim=embedding_dim,
dropout_rate=dropout_rate,
pool_size=pool_size,
input_shape=train.shape[1:],
num_classes=num_classes,
num_features=num_features)
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer, loss=loss, metrics=['acc'])
try:
os.mkdir("logs")
except FileExistsError:
pass
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
try:
os.mkdir(logdir)
except FileExistsError:
pass
try:
os.mkdir("training")
except FileExistsError:
pass
checkpoint_path = "training/model." + model_name + "-{epoch:02d}-{val_loss:.4f}.h5"
checkpoint_dir = os.path.dirname(checkpoint_path)
#!ls {checkpoint_dir}
callbacks = [tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience),
#tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1),
tf.keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_acc', mode='max', verbose=1, save_best_only=True)]
# Train and validate model.
history = model.fit(
train,
train_dataset[1],
epochs=epochs,
callbacks=callbacks,
validation_data=(valid, valid_dataset[1]),
verbose=2, # Logs once per epoch.
batch_size=batch_size)
# Print results.
history = history.history
print('Validation accuracy: {acc}, loss: {loss}'.format(
acc=history['val_acc'][-1], loss=history['val_loss'][-1]))
# Save model.
model.save(f'{model_name}_{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}_nonsepcnn_model.h5')
print(history['val_acc'][-1], history['val_loss'][-1])
test_loss, test_acc = model.evaluate(test, test_dataset[1], verbose=2)
print(f"test loss: {test_loss}, test accuracy: {test_acc} ")
return model
def saveTextData(tdata, fname):
with open(fname, "w") as txt_file:
for line in tdata:
txt_file.write(line + "\n")
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
wordlist_1 = loadData("word.list")
wordlist_2 = loadData("letterpress_en.txt")
wordlist_3 = loadData("SINGLE.TXT")
wordlist = list(set(wordlist_1 + wordlist_2 + wordlist_3))
def isInDictionary(word):
return (word in wordlist)
def theseAreTotallyRealWords(run_count=1000, cutoff=0.9):
totally_real_words = []
is_in_dictionary = []
for i in range(run_count):
real_words = [generateWord(None)]
tokenized_real_words = character_tokenizer.texts_to_sequences(real_words)
padded_real_words = sequence.pad_sequences(tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
real_words_result = model.predict(padded_real_words)
if real_words_result[0] > cutoff:
print(f"{i}\t{real_words[0]}")
totally_real_words.append(real_words[0])
if isInDictionary(real_words[0]):
is_in_dictionary.append(real_words[0])
return totally_real_words, is_in_dictionary
def theseAreTotallyRealWordsOneshot(model, run_count=100, cutoff=0.9, random_dist='uniform', letter_dist='random'):
totally_real_words = []
almost_real_words = []
is_in_dictionary = []
real_words = [generateWord(None, random_dist=random_dist, letter_dist=letter_dist) for i in range(run_count)]
tokenized_real_words = character_tokenizer.texts_to_sequences(real_words)
padded_real_words = sequence.pad_sequences(tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
real_words_result = model.predict(padded_real_words)
rwr = real_words_result.tolist()
for idx in range(len(rwr)):
predict = real_words_result[idx]
if predict[0] > cutoff:
totally_real_words.append(real_words[idx])
else:
if predict[0] > 0.5:
almost_real_words.append(real_words[idx])
if isInDictionary(real_words[idx]):
is_in_dictionary.append(real_words[idx])
return totally_real_words, is_in_dictionary, almost_real_words
def check_model(model, model_name):
#totally_real_words = ["test", "weyhws", "agglution", "glyph", "tyro", "pfxx"]
#tokenized_real_words = character_tokenizer.texts_to_sequences(totally_real_words)
#padded_real_words = sequence.pad_sequences(tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
#real_words_result = model.predict(padded_real_words)
#[int(i * 100) for i in real_words_result]
totally_real, in_dic, almost_words = theseAreTotallyRealWordsOneshot(model, run_count=10000, cutoff=0.8)
print("\nTotally Real Words\n============")
[print(i) for i in set(totally_real)]
print("\nSuper Fake Words\n============")
[print(i) for i in set(in_dic)]
print("\nDictionary Words Found\n============")
[print(i) for i in (set(totally_real) & set(in_dic))]
print("\nDictionary Words Not Found (False Negatives)\n============")
[print(i) for i in (set(in_dic) - set(totally_real))]
print("\nAlmost Words\n============")
[print(i) for i in set(almost_words)]
print("\n")
totally_real, in_dic, almost_words = theseAreTotallyRealWordsOneshot(model, run_count=10000, cutoff=0.8, random_dist='english_table', letter_dist='english')
print("\nTotally Real Words\n============")
[print(i) for i in set(totally_real)]
print("\nSuper Fake Words\n============")
[print(i) for i in set(in_dic)]
print("\nDictionary Words Found\n============")
[print(i) for i in (set(totally_real) & set(in_dic))]
print("\nDictionary Words Not Found (False Negatives)\n============")
[print(i) for i in (set(in_dic) - set(totally_real))]
print("\nAlmost Words\n============")
[print(i) for i in set(almost_words)]
print("\n")
wordlist_chunks = chunks(wordlist, 1000)
wordlist_predict = []
for cnk in wordlist_chunks:
print(cnk[0], end=' ')
tokenized_real_words = character_tokenizer.texts_to_sequences(cnk)
padded_real_words = sequence.pad_sequences(tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
cnk_predictions = model.predict(padded_real_words)
print(cnk_predictions[0])
wordlist_predict = wordlist_predict + cnk_predictions.tolist()
saveTextData(wordlist, "all_english_words.txt")
np.savetxt("all_english_words_predictions.txt", wordlist_predict)
sorted_wordlist = [[i,j] for i,j in sorted(zip(wordlist_predict, wordlist))]
wlp = np.sort(np.array(sorted(wordlist_predict)))
print(f"Average: {np.average(wlp)}, Median: {np.median(wlp)}")
print(wlp[:10])
print(wlp[-10:])
import matplotlib.pyplot as plt
plt.figure(figsize=(16,7))
plt.plot(range(len(wlp)), wlp, label="model 1")
plt.plot()
plt.ylabel("prediction")
plt.title(f"{model_name} Prediction of All English Words")
plt.legend()
plt.show()
[print(f"{j} {i[0]:03.2f}") for i,j in sorted_wordlist[:1000]]
print()
pwords = [generatePronounceableWord(None, just_gen = True) for i in range(10000)]
p_tokenized_real_words = character_tokenizer.texts_to_sequences(pwords)
p_padded_real_words = sequence.pad_sequences(p_tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
p_predictions = model.predict(p_padded_real_words)
p_sorted_wordlist = [[i,j] for i,j in sorted(zip(p_predictions, pwords))]
[print(i) for i in p_sorted_wordlist[:10]]
[print(i) for i in p_sorted_wordlist[-10:]]
p_wlp = np.sort(np.array(sorted(p_predictions)))
print(f"Average: {np.average(p_wlp)}, Median: {np.median(p_wlp)}")
print(p_wlp[:10])
print(p_wlp[-10:])
plt.figure(figsize=(16,7))
plt.plot(range(len(p_wlp)), p_wlp, label="generated")
plt.plot()
plt.ylabel("prediction")
plt.title(f"{model_name} Prediction of Pronounceable Words")
plt.legend()
plt.show()
p2words = [generateWord(None, random_dist='english_table', letter_dist='english') for i in range(10000)]
p2_tokenized_real_words = character_tokenizer.texts_to_sequences(p2words)
p2_padded_real_words = sequence.pad_sequences(p2_tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
p2_predictions = model.predict(p2_padded_real_words)
p2_sorted_wordlist = [[i,j] for i,j in sorted(zip(p2_predictions, pwords))]
[print(i) for i in p2_sorted_wordlist[:10]]
[print(i) for i in p2_sorted_wordlist[-10:]]
p2_wlp = np.sort(np.array(sorted(p2_predictions)))
print(f"Average: {np.average(p2_wlp)}, Median: {np.median(p2_wlp)}")
print(p2_wlp[:10])
print(p2_wlp[-10:])
plt.figure(figsize=(16,7))
plt.plot(range(len(p2_wlp)), p2_wlp, label="generated")
plt.plot()
plt.ylabel("prediction")
plt.title(f"{model_name} Prediction of Random English-Distribution Words")
plt.legend()
plt.show()
p3words = [generateWord(None, random_dist='english_table', letter_dist='random') for i in range(10000)]
p3_tokenized_real_words = character_tokenizer.texts_to_sequences(p3words)
p3_padded_real_words = sequence.pad_sequences(p3_tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
p3_predictions = model.predict(p3_padded_real_words)
p3_sorted_wordlist = [[i,j] for i,j in sorted(zip(p3_predictions, pwords))]
[print(i) for i in p3_sorted_wordlist[:10]]
[print(i) for i in p3_sorted_wordlist[-10:]]
p3_wlp = np.sort(np.array(sorted(p3_predictions)))
print(f"Average: {np.average(p3_wlp)}, Median: {np.median(p3_wlp)}")
print(p3_wlp[:10])
print(p3_wlp[-10:])
plt.figure(figsize=(16,7))
plt.plot(range(len(p3_wlp)), p3_wlp, label="generated")
plt.plot()
plt.ylabel("prediction")
plt.title(f"{model_name} Prediction of Random-Random Words")
plt.legend()
plt.show()
p4words = [generateWord(None, random_dist='uniform', letter_dist='random') for i in range(10000)]
p4_tokenized_real_words = character_tokenizer.texts_to_sequences(p4words)
p4_padded_real_words = sequence.pad_sequences(p4_tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
p4_predictions = model.predict(p4_padded_real_words)
p4_sorted_wordlist = [[i,j] for i,j in sorted(zip(p4_predictions, pwords))]
[print(i) for i in p4_sorted_wordlist[:10]]
[print(i) for i in p4_sorted_wordlist[-10:]]
p4_wlp = np.sort(np.array(sorted(p4_predictions)))
print(f"Average: {np.average(p4_wlp)}, Median: {np.median(p4_wlp)}")
print(p4_wlp[:10])
print(p4_wlp[-10:])
plt.figure(figsize=(16,7))
plt.plot(range(len(p4_wlp)), p4_wlp, label="generated")
plt.plot()
plt.ylabel("prediction")
plt.title(f"{model_name} Prediction of Uniform-Random Words")
plt.legend()
plt.show()
#!pip install wandb
#import wandb
#wandb.init()
# Commented out IPython magic to ensure Python compatibility.
# %tensorboard --logdir logs --port=6006
base_model = train_model(model_name = f"model_{dist_type}_{letter_dist}")
check_model(base_model, f"model_{dist_type}_{letter_dist}")
cnk_words = ["egg", "eggbeater", "seas"]
tokenized_real_words = character_tokenizer.texts_to_sequences(cnk_words)
padded_real_words = sequence.pad_sequences(tokenized_real_words, maxlen=MAX_WORD_LENGTH, padding='post')
cnk_predictions = base_model.predict(padded_real_words)
[print(f"{a} = {int(b[0]*100)}%") for a,b in zip(cnk_words, cnk_predictions)]