-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
113 lines (92 loc) · 3.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
import model
import pprint
import _pickle as cPickle
from glob import glob
import math
import sys
import numpy as np
from utils import TextLoader, UNK_ID
from model import DialogueModel
pp = pprint.PrettyPrinter()
flags = tf.app.flags
flags.DEFINE_integer("num_epochs", 25, "Epoch to train [25]")
flags.DEFINE_integer("memory_size", 300, "Memory size [300]")
flags.DEFINE_integer("emb_size", 300, "The dimension of embedding matrix [300]")
flags.DEFINE_integer("batch_size", 32, "The size of batch [32]")
flags.DEFINE_float("learning_rate", 0.001, "Learning rate [0.001]")
flags.DEFINE_float("keep_prob", 0.5, "Dropout rate [0.5]")
flags.DEFINE_float("grad_clip", 5.0, "Grad clip [5.0]")
flags.DEFINE_integer("temperature", 5, "temperature [5]")
flags.DEFINE_string("checkpoint", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("logdir", "log", "Log directory [log]")
FLAGS = flags.FLAGS
def main(_):
pp.pprint(FLAGS.__flags)
emb = None
try:
# pre-trained chars embedding
emb = np.load("./data/emb.npy")
chars = cPickle.load(open("./data/vocab.pkl", 'rb'))
vocab_size, emb_size = np.shape(emb)
data_loader = TextLoader('./data', FLAGS.batch_size, chars)
except Exception:
data_loader = TextLoader('./data', FLAGS.batch_size)
emb_size = FLAGS.emb_size
vocab_size = data_loader.vocab_size
model = DialogueModel(batch_size=FLAGS.batch_size, max_seq_length=data_loader.seq_length,
vocab_size=vocab_size, pad_token_id=0, unk_token_id=UNK_ID,
emb_size=emb_size, memory_size=FLAGS.memory_size,
keep_prob=FLAGS.keep_prob, learning_rate=FLAGS.learning_rate,
grad_clip=FLAGS.grad_clip, temperature=FLAGS.temperature,
infer=False)
summaries = tf.summary.merge_all()
init = tf.global_variables_initializer()
# save hyper-parameters
cPickle.dump(FLAGS.__flags, open(FLAGS.logdir + "/hyperparams.pkl", 'wb'))
checkpoint = FLAGS.checkpoint + '/model.ckpt'
count = 0
saver = tf.train.Saver()
with tf.Session() as sess:
summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph)
sess.run(init)
if len(glob(checkpoint + "*")) > 0:
saver.restore(sess, checkpoint)
print("Model restored!")
else:
# load embedding
if emb is not None:
sess.run([], { model.embedding: emb })
print("Fresh variables!")
current_step = 0
count = 0
for e in range(FLAGS.num_epochs):
data_loader.reset_batch_pointer()
state = None
# iterate by batch
for _ in range(data_loader.num_batches):
x, y, input_lengths, output_lengths = data_loader.next_batch()
if (current_step + 1) % 10 != 0:
res = model.step(sess, x, y, input_lengths, output_lengths, state)
else:
res = model.step(sess, x, y, input_lengths, output_lengths, state, summaries)
summary_writer.add_summary(res["summary_out"], current_step)
loss = res["loss"]
perplexity = np.exp(loss)
count += 1
print("{0}/{1}({2}), perplexity {3}".format(current_step + 1,
FLAGS.num_epochs * data_loader.num_batches,
e,
perplexity))
state = res["final_state"]
if (current_step + 1) % 2000 == 0:
count = 0
summary_writer.flush()
save_path = saver.save(sess, checkpoint)
print("Model saved in file:", save_path)
current_step = tf.train.global_step(sess, model.global_step)
summary_writer.close()
save_path = saver.save(sess, checkpoint)
print("Model saved in file:", save_path)
if __name__ == "__main__":
tf.app.run()