-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
199 lines (166 loc) · 6.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
from glob import glob
import os
import codecs
import numpy as np
import re
import _pickle as cPickle
import collections
PAD = "_PAD"
GO = "_GO"
EOS = "_EOS"
UNK = "_UNK"
UNK_ID = 3
PAD_ID = 0
START_VOCAB = [PAD, GO, EOS, UNK]
def normalize_unicodes(text):
text = normalize_punctuation(text)
text = "".join([Q2B(c) for c in list(text)])
return text
def replace_all(repls, text):
# return re.sub('|'.join(repls.keys()), lambda k: repls[k.group(0)], text)
return re.sub(u'|'.join(re.escape(key) for key in repls.keys()),
lambda k: repls[k.group(0)], text)
def normalize_punctuation(text):
cpun = [[' '],
[u'﹗'],
[u'“', u'゛', u'〃', u'′'],
[u'”'],
[u'´', u'‘', u'’'],
[u';', u'﹔'],
[u'《', u'〈', u'<'],
[u'》', u'〉', u'>'],
[u'﹑'],
[u'【', u'『', u'〔', u'﹝', u'「', u'﹁'],
[u'】', u'』', u'〕', u'﹞', u'」', u'﹂'],
[u'(', u'「'],
[u')', u'」'],
[u'﹖'],
[u'︰', u'﹕'],
[u'・', u'.', u'·', u'‧', u'°'],
[u'●', u'○', u'▲', u'◎', u'◇', u'■', u'□', u'※', u'◆'],
[u'〜', u'~', u'∼'],
[u'︱', u'│', u'┼', u''],
[u'╱'],
[u'╲'],
[u'—', u'ー', u'―', u'‐', u'−', u'─', u'﹣', u'–', u'ㄧ']]
epun = [u' ', u'!', u'"', u'"', u'\'', u';', u'<', u'>', u'、', u'[', u']', u'(', u')', u'?', u':', u'・', u'•', u'~', u'|', u'/', u'\\', u'-']
repls = {}
for i in range(len(cpun)):
for j in range(len(cpun[i])):
repls[cpun[i][j]] = epun[i]
return replace_all(repls, text)
def Q2B(uchar):
"""全角转半角"""
inside_code = ord(uchar)
if inside_code == 0x3000:
inside_code = 0x0020
else:
inside_code -= 0xfee0
#转完之后不是半角字符返回原来的字符
if inside_code < 0x0020 or inside_code > 0x7e:
return uchar
return chr(inside_code)
class TextLoader(object):
def __init__(self, data_dir, batch_size, chars=[]):
self.data_dir = data_dir
self.batch_size = batch_size
self.seq_length = 0
self.input_files = glob(data_dir + '/*.txt')
self.vocabs = {}
self.chars = chars
self.seq_lengths = []
vocab_file = os.path.join(data_dir, "vocab.pkl")
data_file = os.path.join(data_dir, "data.pkl")
if os.path.exists(data_file):
print("[TextLoader] Load saved data...")
with open(data_file, 'rb') as f:
self.data, self.seq_lengths, my_chars = cPickle.load(f)
self.seq_length = max(self.seq_lengths)
if my_chars is not None and not len(self.chars) > 0:
self.chars = my_chars
self.vocab = dict(zip(self.chars, range(len(self.chars))))
self.vocab_size = len(self.chars)
else:
print("[TextLoader] Reading text file...")
self.preprocess(self.input_files, data_file, vocab_file)
print("[TextLoader] Processing...")
self.create_batches()
self.reset_batch_pointer()
def preprocess(self, input_files, data_file, vocab_file):
sents = []
seq_length = 0
for input_file in input_files:
with codecs.open(input_file, "r", "utf-8") as f:
lines = normalize_unicodes(f.read()).split("\n")
for line in lines:
if len(line) == 0:
continue
seq_length = max(seq_length, len(line))
sents.append(line)
if not len(self.chars):
# Compose vocab
lines = "".join(sents)
counter = collections.Counter(lines)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
self.chars, _ = list(zip(*count_pairs))
self.chars = START_VOCAB + list(self.chars)
self.vocab = dict(zip(self.chars, range(len(self.chars))))
self.vocab_size = len(self.chars)
self.seq_length = seq_length + 1 # for additional symbols GO, EOS
self.data = np.zeros((len(sents), self.seq_length), dtype=np.int32)
# Convert text to one-hot representation
for i, sent in enumerate(sents):
vec, vec_len = self.parse_input(sent)
self.seq_lengths.append(vec_len)
self.data[i] = vec
# Export vocab and data
with open(vocab_file, "wb") as f:
cPickle.dump(self.chars, f)
with open(data_file, "wb") as f:
cPickle.dump((self.data, self.seq_lengths, self.chars), f)
def parse_input(self, inputs):
eos_index = START_VOCAB.index(EOS)
vec = np.array([self.vocab.get(char, UNK_ID) for char in list(inputs)])
vec_len = vec.size + 1 # for additional symbols EOS
# Padding to seq_length
vec = np.lib.pad(vec, (0, self.seq_length - vec.size), 'constant')
vec[vec_len - 1] = eos_index
return vec, vec_len
def compose_output(self, output):
res = ""
for o in output:
if o == 2:
break
try:
res = res + self.chars[o]
except Exception as e:
raise Exception('{0} is out of range'.format(o))
return res
def create_batches(self):
self.num_batches = int((self.data.shape[0] - 1) / (self.batch_size))
batch_length = self.num_batches * int(self.batch_size) + 1
self.data = self.data[:batch_length]
self.seq_lengths = self.seq_lengths[:batch_length]
xdata = self.data[:-1]
ydata = np.copy(self.data[1:])
xdata_lengths = np.array(self.seq_lengths[:-1])
ydata_lengths = np.array(self.seq_lengths[1:])
self.x_batches = np.split(xdata, self.num_batches, 0)
self.y_batches = np.split(ydata, self.num_batches, 0)
self.xdata_lengths_batches = np.split(xdata_lengths, self.num_batches, 0)
self.ydata_lengths_batches = np.split(ydata_lengths, self.num_batches, 0)
def next_batch(self):
x = self.x_batches[self.pointer]
y = self.y_batches[self.pointer]
x_lengths = self.xdata_lengths_batches[self.pointer]
y_lengths = self.ydata_lengths_batches[self.pointer]
self.pointer += 1
return x, y, x_lengths, y_lengths
def reset_batch_pointer(self):
self.pointer = 0
if __name__ == "__main__":
emb = np.load("./data/emb.npy")
chars = cPickle.load(open("./data/vocab.pkl", 'rb'))
data_loader = TextLoader('./data', 12, chars)
data_loader.next_batch()