forked from Arsey/keras-transfer-learning-for-oxford102
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
246 lines (188 loc) · 7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import print_function
import os
import glob
import math
import itertools
import importlib
import matplotlib
matplotlib.use('Agg') # fixes issue if no GUI provided
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import keras
from keras import backend as K
from keras.preprocessing.image import DirectoryIterator
import config
sns.set(style='white')
def save_history(history, prefix):
if 'acc' not in history.history:
return
if not os.path.exists(config.plots_dir):
os.mkdir(config.plots_dir)
img_path = os.path.join(config.plots_dir, '{}-%s.jpg'.format(prefix))
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig(img_path % 'accuracy')
plt.close()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.savefig(img_path % 'loss')
plt.close()
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
confusion_matrix_dir = './confusion_matrix_plots'
if not os.path.exists(confusion_matrix_dir):
os.mkdir(confusion_matrix_dir)
plt.cla()
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="#BFD1D4" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
if normalize:
plt.savefig(os.path.join(confusion_matrix_dir, 'normalized.jpg'))
else:
plt.savefig(os.path.join(confusion_matrix_dir, 'without_normalization.jpg'))
def get_dir_imgs_number(dir_path):
allowed_extensions = ['*.png', '*.jpg', '*.jpeg', '*.bmp']
number = 0
for e in allowed_extensions:
number += len(glob.glob(os.path.join(dir_path, e)))
return number
def set_samples_info():
"""Walks through the train and valid directories
and returns number of images"""
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}
dirs_info = {config.train_dir: 0, config.validation_dir: 0, config.test_dir: 0}
for d in dirs_info:
iglob_iter = glob.iglob(d + '**/*.*')
for i in iglob_iter:
_, file_extension = os.path.splitext(i)
if file_extension[1:] in white_list_formats:
dirs_info[d] += 1
config.nb_train_samples = dirs_info[config.train_dir]
config.nb_validation_samples = dirs_info[config.validation_dir]
config.nb_test_samples = dirs_info[config.test_dir]
def get_class_weight(d):
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}
class_number = dict()
dirs = sorted([o for o in os.listdir(d) if os.path.isdir(os.path.join(d, o))])
k = 0
for class_name in dirs:
class_number[k] = 0
iglob_iter = glob.iglob(os.path.join(d, class_name, '*.*'))
for i in iglob_iter:
_, ext = os.path.splitext(i)
if ext[1:] in white_list_formats:
class_number[k] += 1
k += 1
total = np.sum(list(class_number.values()))
max_samples = np.max(list(class_number.values()))
mu = 1. / (total / float(max_samples))
keys = class_number.keys()
class_weight = dict()
for key in keys:
score = math.log(mu * total / float(class_number[key]))
class_weight[key] = score if score > 1. else 1.
return class_weight
def set_classes_from_train_dir():
"""Returns classes based on directories in train directory"""
d = config.train_dir
config.classes = sorted([o for o in os.listdir(d) if os.path.isdir(os.path.join(d, o))])
def override_keras_directory_iterator_next():
"""Overrides .next method of DirectoryIterator in Keras
to reorder color channels for images from RGB to BGR"""
original_next = DirectoryIterator.next
# do not allow to override one more time
if 'custom_next' in str(original_next):
return
def custom_next(self):
batch_x, batch_y = original_next(self)
batch_x = batch_x[:, ::-1, :, :]
return batch_x, batch_y
DirectoryIterator.next = custom_next
def get_classes_in_keras_format():
if config.classes:
return dict(zip(config.classes, range(len(config.classes))))
return None
def get_model_class_instance(*args, **kwargs):
module = importlib.import_module("models.{}".format(config.model))
return module.inst_class(*args, **kwargs)
def get_activation_function(m, layer):
x = [m.layers[0].input, K.learning_phase()]
y = [m.get_layer(layer).output]
return K.function(x, y)
def get_activations(activation_function, X_batch):
activations = activation_function([X_batch, 0])
return activations[0][0]
def save_activations(model, inputs, files, layer, batch_number):
all_activations = []
ids = []
af = get_activation_function(model, layer)
for i, inp in enumerate(inputs):
acts = get_activations(af, [inp])
all_activations.append(acts)
ids.append(files[i].split('/')[-2])
submission = pd.DataFrame(all_activations)
submission.insert(0, 'class', ids)
submission.reset_index()
if batch_number > 0:
submission.to_csv(config.activations_path, index=False, mode='a', header=False)
else:
submission.to_csv(config.activations_path, index=False)
def lock():
if os.path.exists(config.lock_file):
exit('Previous process is not yet finished.')
with open(config.lock_file, 'w') as lock_file:
lock_file.write(str(os.getpid()))
def unlock():
if os.path.exists(config.lock_file):
os.remove(config.lock_file)
def is_keras2():
return keras.__version__.startswith('2')
def get_keras_backend_name():
try:
return K.backend()
except AttributeError:
return K._BACKEND
def set_img_format():
try:
if K.backend() == 'theano':
K.set_image_data_format('channels_first')
else:
K.set_image_data_format('channels_last')
except AttributeError:
if K._BACKEND == 'theano':
K.set_image_dim_ordering('th')
else:
K.set_image_dim_ordering('tf')