-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel.py
140 lines (116 loc) · 6.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import inspect
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.contrib.rnn.python.ops.rnn_cell import _linear
from utils import SwitchableDropoutWrapper
from ran_cell import RANCell
class RecurrentVariationalAutoencoder(object):
def __init__(self, batch_size, num_input, num_hidden, layer_depth, rnn_type, seq_length,
learning_rate, keep_drop=0.5, grad_clip=5.0, is_training=False):
self.num_input = num_input
self.num_hidden = num_hidden
self.seq_length = seq_length
self.batch_size = batch_size
self.rnn_type = rnn_type
self.layer_depth = layer_depth
self.learning_rate = learning_rate
self.grad_clip = grad_clip
self.is_training = is_training
self.keep_drop = keep_drop
self.x = tf.placeholder(tf.float32, [batch_size, seq_length, self.num_input])
# LSTM cells for encoder and decoder
def create_cell():
if rnn_type == "GRU":
cell = rnn.GRUCell(num_hidden)
elif rnn_type == "RAN":
cell = RANCell(num_hidden, normalize=tf.constant(self.is_training))
cell = SwitchableDropoutWrapper(cell, output_keep_prob=self.keep_drop, is_train=tf.constant(self.is_training))
return cell
with tf.variable_scope('encoder_cells', initializer=tf.contrib.layers.xavier_initializer()):
self.enc_cell = rnn.DeviceWrapper(rnn.MultiRNNCell([create_cell() for _ in range(layer_depth)]), device="/gpu:0")
with tf.variable_scope('decoder_cells', initializer=tf.contrib.layers.xavier_initializer()):
self.dec_cell = rnn.DeviceWrapper(rnn.MultiRNNCell([create_cell() for _ in range(layer_depth)]), device="/gpu:1")
with tf.variable_scope('encoder'):
outputs, _ = tf.nn.dynamic_rnn(cell=self.enc_cell,
inputs=self.x,
time_major=False,
swap_memory=True,
dtype=tf.float32)
self.enc_output = outputs[:, -1, :]
with tf.variable_scope('latent'):
# reparametrization trick
with tf.name_scope("Z"):
self.z_mean = tf.contrib.layers.fully_connected(inputs=self.enc_output, num_outputs=num_hidden,
activation_fn=None, scope="z_mean")
self.z_stddev = tf.contrib.layers.fully_connected(inputs=self.enc_output, num_outputs=num_hidden,
activation_fn=tf.nn.softplus, scope="z_ls2")
# sample z from the latent distribution
with tf.name_scope("z_samples"):
with tf.name_scope('random_normal_sample'):
eps = tf.random_normal((batch_size, num_hidden), 0, 1, dtype=tf.float32) # draw a random number
with tf.name_scope('z_sample'):
self.z = self.z_mean + tf.sqrt(self.z_stddev) * eps # a sample it from Z -> z
with tf.variable_scope('decoder'):
reversed_inputs = tf.reverse(self.x, [1])
flat_targets = tf.reshape(reversed_inputs, [-1])
dec_first_inp = tf.nn.relu(_linear(self.z, self.num_input, True))
# [GO, ...inputs]
dec_inputs = tf.concat((tf.expand_dims(dec_first_inp, 1), reversed_inputs[:, 1:, :]), 1)
self.w1 = tf.get_variable("w1", shape=[self.num_hidden, self.num_input],
initializer=tf.contrib.layers.xavier_initializer())
self.b1 = tf.get_variable("b1", shape=[self.num_input], initializer=tf.constant_initializer(0.0))
self.initial_state = self.dec_cell.zero_state(batch_size, dtype=tf.float32)
dec_outputs, _ = tf.nn.dynamic_rnn(cell=self.dec_cell,
inputs=dec_inputs,
initial_state=self.initial_state,
time_major=False,
swap_memory=True,
dtype=tf.float32)
logist = tf.matmul(tf.reshape(dec_outputs, [-1, self.num_hidden]), self.w1) + self.b1
self.reconstruction = tf.reshape(logist, [-1])
self.reconstruction_loss = 0.5 * tf.reduce_mean(tf.pow(self.reconstruction - flat_targets, 2.0))
self.latent_loss = -0.5 * (1.0 + tf.log(self.z_stddev) - tf.square(self.z_mean) - self.z_stddev)
self.latent_loss = tf.reduce_sum(self.latent_loss, 1) / tf.cast(seq_length, tf.float32)
self.latent_loss = tf.reduce_sum(self.latent_loss) / tf.cast(batch_size, tf.float32)
self.cost = tf.reduce_mean(self.reconstruction_loss + self.latent_loss)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), self.grad_clip)
optimizer = tf.train.AdamOptimizer(learning_rate, epsilon=0.001)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
def partial_fit(self, sess, X):
cost, _ = sess.run((self.cost, self.train_op), feed_dict={self.x: X})
return cost
def calc_total_cost(self, sess, X):
return sess.run(self.cost, feed_dict={self.x: X})
def transform(self, sess, X):
return sess.run(self.z, feed_dict={self.x: X})
def generate(self, sess, hidden=None):
if hidden is None:
hidden = sess.run(tf.random_normal([1, self.num_hidden]))
return sess.run(self.reconstruction, feed_dict={self.z: hidden})
def reconstruct(self, sess, X):
return sess.run(self.reconstruction, feed_dict={self.x: X})
def getWeights(self, sess):
return sess.run(self.w1)
def getBiases(self, sess):
return sess.run(self.b1)
if __name__ == "__main__":
import numpy as np
np.random.seed(1)
tf.set_random_seed(1)
batch_size = 32
num_input = 200
num_hidden = 128
layer_depth = 2
seq_length = 20
rnn_type = 'RAN'
epochs = 1000
learning_rate = 1e-3
rva = RecurrentVariationalAutoencoder(batch_size, num_input, num_hidden, layer_depth, rnn_type,
seq_length, learning_rate, 0.5, 5.0, True)
dataset = np.random.rand(batch_size, seq_length, num_input)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
tf.global_variables_initializer().run()
for e in range(epochs):
cost = rva.partial_fit(sess, dataset)
print('epoch:', e, 'Cost: ', cost)