-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
108 lines (95 loc) · 4.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
from tensorflow.python.util import nest
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.contrib import rnn
from tensorflow.contrib.rnn.python.ops import core_rnn_cell_impl
_BIAS_VARIABLE_NAME = "bias"
_WEIGHTS_VARIABLE_NAME = "kernel"
def linear(args,
output_size,
bias,
bias_initializer=None,
kernel_initializer=None,
kernel_regularizer=None,
bias_regularizer=None,
normalize=False):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_initializer: starting value to initialize the bias
(default is all zeros).
kernel_initializer: starting value to initialize the weight.
kernel_regularizer: kernel regularizer
bias_regularizer: bias regularizer
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape() for a in args]
for shape in shapes:
if shape.ndims != 2:
raise ValueError("linear is expecting 2D arguments: %s" % shapes)
if shape[1].value is None:
raise ValueError("linear expects shape[1] to be provided for shape %s, "
"but saw %s" % (shape, shape[1]))
else:
total_arg_size += shape[1].value
dtype = [a.dtype for a in args][0]
# Now the computation.
scope = vs.get_variable_scope()
with vs.variable_scope(scope) as outer_scope:
weights = vs.get_variable(
_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size],
dtype=dtype,
initializer=kernel_initializer,
regularizer=kernel_regularizer)
if len(args) == 1:
res = math_ops.matmul(args[0], weights)
else:
res = math_ops.matmul(array_ops.concat(args, 1), weights)
res = tf.cond(normalize, lambda: tf.contrib.layers.layer_norm(res), lambda: res)
# remove the layer’s bias if there is one (because it would be redundant)
if not bias:
return res
with vs.variable_scope(outer_scope) as inner_scope:
inner_scope.set_partitioner(None)
if bias_initializer is None:
bias_initializer = init_ops.constant_initializer(0.0, dtype=dtype)
biases = vs.get_variable(
_BIAS_VARIABLE_NAME, [output_size],
dtype=dtype,
initializer=bias_initializer,
regularizer=bias_regularizer)
return nn_ops.bias_add(res, biases)
class SwitchableDropoutWrapper(rnn.DropoutWrapper):
def __init__(self, cell, is_train, input_keep_prob=1.0, output_keep_prob=1.0, seed=None):
super(SwitchableDropoutWrapper, self).__init__(cell,
input_keep_prob=input_keep_prob,
output_keep_prob=output_keep_prob,
seed=seed)
self.is_train = is_train
def __call__(self, inputs, state, scope=None):
outputs_do, new_state_do = super(SwitchableDropoutWrapper, self).__call__(inputs, state, scope=scope)
tf.get_variable_scope().reuse_variables()
outputs, new_state = self._cell(inputs, state, scope)
outputs = tf.cond(self.is_train, lambda: outputs_do, lambda: outputs)
if isinstance(state, tuple):
new_state = state.__class__(*[tf.cond(self.is_train, lambda: new_state_do_i, lambda: new_state_i)
for new_state_do_i, new_state_i in zip(new_state_do, new_state)])
else:
new_state = tf.cond(self.is_train, lambda: new_state_do, lambda: new_state)
return outputs, new_state