-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmae_huge14.th
2878 lines (2878 loc) · 309 KB
/
mae_huge14.th
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
03-04 14:30:05 I ------------------
03-04 14:30:05 I initializing wandb (mode=online)
03-04 14:30:08 I logged into wandb (host=https://api.wandb.ai/)
03-04 14:30:14 I ------------------
03-04 14:30:14 I python main_train.py --hp yamls_paper/probe/run/huge_facebook.yaml
03-04 14:30:14 I ------------------
03-04 14:30:14 I VERSION CHECK
03-04 14:30:14 I python version: 3.9.13
03-04 14:30:14 I torch version: 1.12.1.post200
03-04 14:30:14 I torchmetrics version: 0.11.0
03-04 14:30:14 I kappabenchmark version: 0.0.10
03-04 14:30:14 I kappaconfig version: 1.0.29
03-04 14:30:14 I kappadata version: 1.1.5
03-04 14:30:14 I kappaprofiler version: 1.0.9
03-04 14:30:14 I kappaschedules version: 0.0.7
03-04 14:30:14 I pytorch_concurrent_dataloader version: 0.0.7
03-04 14:30:14 I torchmetrics version: 0.11.0
03-04 14:30:14 I ------------------
03-04 14:30:14 I SYSTEM INFO
03-04 14:30:14 I current commit hash: 7fcd4ce85a6816da2c914cc9d9c905346e5e45ad
03-04 14:30:14 I total_cpu_count: 32
03-04 14:30:14 I ------------------
03-04 14:30:14 I CLI ARGS
03-04 14:30:14 I hp: yamls_paper/probe/run/huge_facebook.yaml
03-04 14:30:14 I accelerator: gpu
03-04 14:30:14 I testrun: False
03-04 14:30:14 I minmodelrun: False
03-04 14:30:14 I mindatarun: False
03-04 14:30:14 I mindurationrun: False
03-04 14:30:14 I datasets_were_preloaded: False
03-04 14:30:14 I disable_flash_attention: False
03-04 14:30:14 I ------------------
03-04 14:30:14 I DIST CONFIG
03-04 14:30:14 I rank: 0
03-04 14:30:14 I local_rank: 0
03-04 14:30:14 I world_size: 4
03-04 14:30:14 I nodes: 1
03-04 14:30:14 I backend: nccl
03-04 14:30:14 I slurm job id: 293260
03-04 14:30:14 I ------------------
stage_name: probe
datasets:
train:
kind: image_net
version: imagenet1k
split: train
x_transform:
- kind: kd_random_resized_crop
size: 224
scale:
- 0.08
- 1.0
interpolation: bicubic
- kind: random_horizontal_flip
- kind: kd_image_net_norm
test:
kind: image_net
version: imagenet1k
split: test
x_transform:
- kind: kd_resize
size: 256
interpolation: bicubic
- kind: center_crop
size: 224
- kind: kd_image_net_norm
model:
kind: backbone_head
backbone:
kind: vit.vit_mae
patch_size: 14
kwargs:
patch_size: 14
embedding_dim: 1280
depth: 32
attention_heads: 16
is_frozen: true
initializer:
kind: pretrained_initializer
weights_file: mae_pretrain_vit_huge.pth
head:
kind: heads.multi_linear_head
poolings:
cls:
kind: class_token
initializers:
default:
kind: trunc_normal_initializer
std: 0.01
optimizers:
sgd_lr01_wupcos_wd0:
kind: sgd
lr: 0.1
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr009_wupcos_wd0:
kind: sgd
lr: 0.09
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr008_wupcos_wd0:
kind: sgd
lr: 0.08
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr007_wupcos_wd0:
kind: sgd
lr: 0.07
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr006_wupcos_wd0:
kind: sgd
lr: 0.06
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr005_wupcos_wd0:
kind: sgd
lr: 0.05
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr004_wupcos_wd0:
kind: sgd
lr: 0.04
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr003_wupcos_wd0:
kind: sgd
lr: 0.03
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr002_wupcos_wd0:
kind: sgd
lr: 0.02
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
sgd_lr001_wupcos_wd0:
kind: sgd
lr: 0.001
momentum: 0.9
schedule:
- kind: linear
end_percent: 10.0
- kind: cosine_annealing
trainer:
kind: classification_trainer
effective_batch_size: 1024
max_epochs: 50
log_every_n_epochs: 1
precision: bfloat16
loggers:
- kind: accuracy_logger
every_n_epochs: 1
dataset_key: test
- kind: checkpoint_logger
save_optim: false
save_latest_optim: false
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr01_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr01_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr009_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr009_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr008_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr008_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr007_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr007_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr006_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr006_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr005_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr005_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr004_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr004_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr003_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr003_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr002_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr002_wupcos_wd0_default
- kind: best_model_logger
every_n_epochs: 1
metric_key: accuracy1/test/cls_sgd_lr001_wupcos_wd0_default
model_name: backbone_head.head.cls_sgd_lr001_wupcos_wd0_default
summary_summarizers:
- kind: best_metric_summary_summarizer
pattern: accuracy1/test*/last
- kind: best_metric_summary_summarizer
pattern: accuracy1/test*/max
- kind: best_metric_summary_summarizer
pattern: accuracy1/test/cls_*/last
- kind: best_metric_summary_summarizer
pattern: accuracy1/test/cls_*/max
03-04 14:30:14 I copied unresolved hp to /project/home/PROJECT/save/mlp/probe/10dwuvzu/hp_unresolved.yaml
03-04 14:30:14 I dumped resolved hp to /project/home/PROJECT/save/mlp/probe/10dwuvzu/hp_resolved.yaml
03-04 14:30:14 I ------------------
03-04 14:30:14 I training stage 'probe'
03-04 14:30:14 I no seed specified -> using seed=5
03-04 14:30:14 I using different seeds per process (seed+rank)
03-04 14:30:14 I set seed to 5
03-04 14:30:14 I ------------------
03-04 14:30:14 I initializing datasets
03-04 14:30:14 I initialzing train
03-04 14:30:14 I data_source (global): '/project/home/PROJECT/data/imagenet1k/train'
03-04 14:30:14 I data_source (local): '/mnt/tier0/project/PROJECT/imagenet1k/train'
03-04 14:30:14 I extracting 1000 zips from '/project/home/PROJECT/data/imagenet1k/train' to '/mnt/tier0/project/PROJECT/imagenet1k/train' using 10 workers
03-04 14:34:00 I finished copying data from global to local
03-04 14:34:00 I source_root '/mnt/tier0/project/PROJECT/imagenet1k/train' contains 1000 folders
03-04 14:34:03 I initialzing test
03-04 14:34:03 I data_source (global): '/project/home/PROJECT/data/imagenet1k/val'
03-04 14:34:03 I data_source (local): '/mnt/tier0/project/PROJECT/imagenet1k/val'
03-04 14:34:03 I extracting 1000 zips from '/project/home/PROJECT/data/imagenet1k/val' to '/mnt/tier0/project/PROJECT/imagenet1k/val' using 10 workers
03-04 14:34:13 I finished copying data from global to local
03-04 14:34:13 I source_root '/mnt/tier0/project/PROJECT/imagenet1k/val' contains 1000 folders
03-04 14:34:13 I ------------------
03-04 14:34:13 I initializing trainer
03-04 14:34:13 I ------------------
03-04 14:34:13 I creating model
03-04 14:34:14 I using fixed positional embedding
03-04 14:34:14 I using FlashAttention
03-04 14:34:27 I vit_mae skipping model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I initialized LinearHead with weight=trunc_normal(std=0.01) bias=0
03-04 14:34:27 I linear_head applying model specific initialization
03-04 14:34:27 I applying model specific initialization
03-04 14:34:27 I skipping model specific initialization
03-04 14:34:27 I vit_mae is frozen -> no optimizer to initialize
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 1e-1
03-04 14:34:27 I scaled lr: 0.4 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 9e-2
03-04 14:34:27 I scaled lr: 0.36 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 8e-2
03-04 14:34:27 I scaled lr: 0.32 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 7e-2
03-04 14:34:27 I scaled lr: 0.28 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 6e-2
03-04 14:34:27 I scaled lr: 0.24 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 5e-2
03-04 14:34:27 I scaled lr: 0.2 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 4e-2
03-04 14:34:27 I scaled lr: 0.16 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 3e-2
03-04 14:34:27 I scaled lr: 0.12 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 2e-2
03-04 14:34:27 I scaled lr: 0.08 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:27 I linear_head initialize optimizer
03-04 14:34:27 I unscaled lr: 1e-3
03-04 14:34:27 I scaled lr: 0.004 (LinearLrScaler(divisor=256) lr_scaler_factor=1024)
03-04 14:34:27 I group modifiers exclude_bias_from_wd=True exclude_norm_from_wd=True []
03-04 14:34:28 I added default DatasetStatsLogger()
03-04 14:34:28 I added default ParamCountLogger()
03-04 14:34:28 I added default ProgressLogger(every_n_epochs=1)
03-04 14:34:28 I added default TrainTimeLogger(every_n_epochs=1)
03-04 14:34:28 I added default OnlineLossLogger(every_n_epochs=1)
03-04 14:34:28 I added default LrLogger(every_n_updates=50)
03-04 14:34:28 I added default FreezerLogger(every_n_updates=50)
03-04 14:34:28 I added default OnlineLossLogger(every_n_updates=50)
03-04 14:34:28 I ------------------
03-04 14:34:28 I PREPARE TRAINER
03-04 14:34:28 I calculating batch_size and accumulation_steps (effective_batch_size=1024)
03-04 14:34:28 I model is batch_size dependent -> disabled possible gradient accumulation
03-04 14:34:28 I train_batches per epoch: 1251 (world_size=4 batch_size=256)
03-04 14:34:28 I initializing train dataloader
03-04 14:34:28 I created 'train' dataloader (type=pytorch batch_size=256 num_workers=22 pin_memory=True dataset_length=1281167 persistent_workers=True total_cpu_count=32)
03-04 14:34:28 I ------------------
03-04 14:34:28 I BEFORE TRAINING
03-04 14:34:28 I train: 1281167 samples
03-04 14:34:28 I skipping dataset statistics for train (too big len(ds)=1281167)
03-04 14:34:28 I test: 50000 samples
03-04 14:34:28 I test has 1000 classes (1000 classes with samples)
03-04 14:34:28 I each class has at least 50 samples
03-04 14:34:28 I each class has at most 50 samples
03-04 14:34:28 I each class has on average 50.0 samples
03-04 14:34:28 I parameter counts (trainable | frozen)
03-04 14:34:28 I 12,810,000 | 630,435,840 | total
03-04 14:34:28 I 0 | 630,435,840 | backbone.vit_mae
03-04 14:34:28 I 12,810,000 | 0 | head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr01_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr009_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr008_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr007_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr006_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr005_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr004_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr003_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr002_wupcos_wd0_default.linear_head
03-04 14:34:28 I 1,281,000 | 0 | head.cls_sgd_lr001_wupcos_wd0_default.linear_head
03-04 14:34:28 I created 'test' dataloader (type=pytorch batch_size=256 num_workers=8 pin_memory=True dataset_length=50000 persistent_workers=True total_cpu_count=32)
03-04 14:34:28 I estimated checkpoint size: 7.7GB
03-04 14:34:28 I estimated weight checkpoint size: 2.5GB
03-04 14:34:28 I estimated optim checkpoint size: 5.1GB
03-04 14:34:28 I estimated size for 1 checkpoints: 2.5GB
03-04 14:34:28 I ------------------
03-04 14:34:28 I DatasetStatsLogger()
03-04 14:34:28 I ParamCountLogger()
03-04 14:34:28 I ProgressLogger(every_n_epochs=1)
03-04 14:34:28 I TrainTimeLogger(every_n_epochs=1)
03-04 14:34:28 I OnlineLossLogger(every_n_epochs=1)
03-04 14:34:28 I LrLogger(every_n_updates=50)
03-04 14:34:28 I FreezerLogger(every_n_updates=50)
03-04 14:34:28 I OnlineLossLogger(every_n_updates=50)
03-04 14:34:28 I AccuracyLogger(every_n_epochs=1)
03-04 14:34:28 I CheckpointLogger()
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I BestModelLogger(every_n_epochs=1)
03-04 14:34:28 I ------------------
03-04 14:34:28 I START TRAINING
03-04 14:34:28 I initializing dataloader workers
03-04 14:34:30 I initialized dataloader workers
03-04 14:34:32 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 14:34:41 I 0 unused parameters
03-04 14:34:41 I Reducer buckets have been rebuilt in this iteration.
03-04 14:49:19 I ------------------
03-04 14:49:19 I Epoch 1 (E1_U1251_S1281024)
03-04 14:49:19 I train_iter=[1.64, 1.56, 1.22, 1.48] train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 14:49:19 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 2.92392472
03-04 14:49:19 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 2.99069694
03-04 14:49:19 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 3.07144377
03-04 14:49:19 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 3.16404139
03-04 14:49:19 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 3.27729749
03-04 14:49:19 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 3.41963762
03-04 14:49:19 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 3.60224384
03-04 14:49:19 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 3.85355533
03-04 14:49:19 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 4.23789500
03-04 14:49:19 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 6.59628126
03-04 14:49:19 I loss/online/total: 37.13701736
03-04 14:49:52 I accuracy_logger_test_iter=0.76 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 14:49:53 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.6889
03-04 14:49:53 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.6854
03-04 14:49:54 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.6829
03-04 14:49:54 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.6784
03-04 14:49:54 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.6729
03-04 14:49:54 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.6644
03-04 14:49:54 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.6534
03-04 14:49:54 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.6370
03-04 14:49:54 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.6097
03-04 14:49:54 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.1601
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): -inf --> 0.6888800263404846
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): -inf --> 0.6854400038719177
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): -inf --> 0.682919979095459
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): -inf --> 0.6784200072288513
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): -inf --> 0.6729000210762024
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): -inf --> 0.6644399762153625
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): -inf --> 0.6534000039100647
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): -inf --> 0.6370400190353394
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): -inf --> 0.6096799969673157
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 14:49:54 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): -inf --> 0.16009999811649323
03-04 14:49:54 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 14:49:54 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 14:49:54 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 15:04:33 I ------------------
03-04 15:04:33 I Epoch 2 (E2_U2502_S2562048)
03-04 15:04:33 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 15:04:33 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.48700849
03-04 15:04:33 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.49354376
03-04 15:04:33 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.50437381
03-04 15:04:33 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.52036196
03-04 15:04:33 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.54358006
03-04 15:04:33 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.57841772
03-04 15:04:33 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.63007720
03-04 15:04:33 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.71358793
03-04 15:04:33 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.86820176
03-04 15:04:33 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 4.98323810
03-04 15:04:33 I loss/online/total: 19.32239079
03-04 15:05:06 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 15:05:07 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7169
03-04 15:05:07 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7169
03-04 15:05:07 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7168
03-04 15:05:07 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7162
03-04 15:05:07 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7152
03-04 15:05:07 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7131
03-04 15:05:07 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7093
03-04 15:05:07 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7033
03-04 15:05:07 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.6906
03-04 15:05:07 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.4091
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.6888800263404846 --> 0.7168599963188171
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.6854400038719177 --> 0.716920018196106
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.682919979095459 --> 0.716759979724884
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.6784200072288513 --> 0.7162200212478638
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.6729000210762024 --> 0.7152000069618225
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.6644399762153625 --> 0.713100016117096
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.6534000039100647 --> 0.7092800140380859
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.6370400190353394 --> 0.7033399939537048
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.6096799969673157 --> 0.6905999779701233
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 15:05:07 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.16009999811649323 --> 0.4091399908065796
03-04 15:05:07 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 15:05:07 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 15:05:07 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 15:19:47 I ------------------
03-04 15:19:47 I Epoch 3 (E3_U3753_S3843072)
03-04 15:19:47 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 15:19:47 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.41827890
03-04 15:19:47 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.40434215
03-04 15:19:47 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.39363739
03-04 15:19:47 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.38680881
03-04 15:19:47 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.38515480
03-04 15:19:47 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.39089124
03-04 15:19:47 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.40644877
03-04 15:19:47 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.44005947
03-04 15:19:47 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.51136054
03-04 15:19:47 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 3.51953568
03-04 15:19:47 I loss/online/total: 16.25651776
03-04 15:20:20 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 15:20:21 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7188
03-04 15:20:21 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7205
03-04 15:20:21 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7238
03-04 15:20:21 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7253
03-04 15:20:21 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7279
03-04 15:20:21 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7283
03-04 15:20:21 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7277
03-04 15:20:21 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7246
03-04 15:20:21 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7181
03-04 15:20:21 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.5344
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.7168599963188171 --> 0.7188400030136108
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.716920018196106 --> 0.7204800248146057
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.716759979724884 --> 0.7237600088119507
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7162200212478638 --> 0.7252799868583679
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7152000069618225 --> 0.7279000282287598
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.713100016117096 --> 0.7282599806785583
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7092800140380859 --> 0.7276600003242493
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7033399939537048 --> 0.7246000170707703
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.6905999779701233 --> 0.7181000113487244
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 15:20:21 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.4091399908065796 --> 0.5344200134277344
03-04 15:20:21 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 15:20:21 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 15:20:21 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 15:35:01 I ------------------
03-04 15:35:01 I Epoch 4 (E4_U5004_S5124096)
03-04 15:35:01 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 15:35:01 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.45620523
03-04 15:35:01 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.42283899
03-04 15:35:01 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.39341813
03-04 15:35:01 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.36817993
03-04 15:35:01 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.34839790
03-04 15:35:01 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.33515452
03-04 15:35:01 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.33082142
03-04 15:35:01 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.34044516
03-04 15:35:01 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.37794269
03-04 15:35:01 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 2.70237911
03-04 15:35:01 I loss/online/total: 15.07578310
03-04 15:35:34 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 15:35:35 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7126
03-04 15:35:35 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7169
03-04 15:35:35 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7196
03-04 15:35:35 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7231
03-04 15:35:35 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7252
03-04 15:35:35 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7279
03-04 15:35:35 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7308
03-04 15:35:35 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7313
03-04 15:35:35 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7283
03-04 15:35:35 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.5964
03-04 15:35:35 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7276600003242493 --> 0.7308200001716614
03-04 15:35:35 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 15:35:35 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 15:35:35 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7246000170707703 --> 0.7313399910926819
03-04 15:35:35 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 15:35:35 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 15:35:35 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7181000113487244 --> 0.7283200025558472
03-04 15:35:35 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 15:35:35 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 15:35:35 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.5344200134277344 --> 0.5964199900627136
03-04 15:35:35 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 15:35:35 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 15:35:35 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 15:50:14 I ------------------
03-04 15:50:14 I Epoch 5 (E5_U6255_S6405120)
03-04 15:50:14 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 15:50:14 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.54935580
03-04 15:50:14 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.49345562
03-04 15:50:14 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.44281803
03-04 15:50:14 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.39770589
03-04 15:50:14 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.35895832
03-04 15:50:14 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.32757826
03-04 15:50:14 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.30537038
03-04 15:50:14 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.29628073
03-04 15:50:14 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.31132263
03-04 15:50:14 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 2.26585105
03-04 15:50:14 I loss/online/total: 14.74869670
03-04 15:50:47 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 15:50:48 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7118
03-04 15:50:48 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7151
03-04 15:50:48 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7192
03-04 15:50:48 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7235
03-04 15:50:48 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7273
03-04 15:50:48 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7314
03-04 15:50:48 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7351
03-04 15:50:48 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7375
03-04 15:50:49 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7358
03-04 15:50:49 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6297
03-04 15:50:49 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7282599806785583 --> 0.7313799858093262
03-04 15:50:49 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 15:50:49 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 15:50:49 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7308200001716614 --> 0.7350800037384033
03-04 15:50:49 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 15:50:49 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 15:50:49 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7313399910926819 --> 0.7374799847602844
03-04 15:50:49 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 15:50:49 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 15:50:49 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7283200025558472 --> 0.7358199954032898
03-04 15:50:49 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 15:50:49 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 15:50:49 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.5964199900627136 --> 0.6297000050544739
03-04 15:50:49 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 15:50:49 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 15:50:49 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 16:05:28 I ------------------
03-04 16:05:28 I Epoch 6 (E6_U7506_S7686144)
03-04 16:05:28 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 16:05:28 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.60229872
03-04 16:05:28 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.53057024
03-04 16:05:28 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.46551781
03-04 16:05:28 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.40743671
03-04 16:05:28 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.35675892
03-04 16:05:28 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.31415060
03-04 16:05:28 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.28104848
03-04 16:05:28 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.26106169
03-04 16:05:28 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.26310940
03-04 16:05:28 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 2.00951526
03-04 16:05:28 I loss/online/total: 14.49146785
03-04 16:06:01 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 16:06:02 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7191
03-04 16:06:02 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7236
03-04 16:06:02 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7265
03-04 16:06:02 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7304
03-04 16:06:02 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7346
03-04 16:06:02 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7389
03-04 16:06:02 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7427
03-04 16:06:02 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7459
03-04 16:06:02 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7452
03-04 16:06:02 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6523
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.7188400030136108 --> 0.7191399931907654
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.7204800248146057 --> 0.7235599756240845
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.7237600088119507 --> 0.7265400290489197
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7252799868583679 --> 0.7303599715232849
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7279000282287598 --> 0.7345600128173828
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7313799858093262 --> 0.7388799786567688
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7350800037384033 --> 0.742680013179779
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7374799847602844 --> 0.7459200024604797
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7358199954032898 --> 0.7451599836349487
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 16:06:02 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6297000050544739 --> 0.6523000001907349
03-04 16:06:02 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 16:06:02 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 16:06:02 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 16:20:42 I ------------------
03-04 16:20:42 I Epoch 7 (E7_U8757_S8967168)
03-04 16:20:42 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 16:20:42 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.58689312
03-04 16:20:42 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.51293872
03-04 16:20:42 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.44570917
03-04 16:20:42 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.38543917
03-04 16:20:42 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.33275383
03-04 16:20:42 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.28824453
03-04 16:20:42 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.25295735
03-04 16:20:42 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.23016105
03-04 16:20:42 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.22776382
03-04 16:20:42 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.85892333
03-04 16:20:42 I loss/online/total: 14.12178409
03-04 16:21:15 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 16:21:16 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7195
03-04 16:21:16 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7230
03-04 16:21:16 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7262
03-04 16:21:16 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7301
03-04 16:21:16 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7339
03-04 16:21:16 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7379
03-04 16:21:16 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7407
03-04 16:21:16 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7439
03-04 16:21:16 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7469
03-04 16:21:16 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6664
03-04 16:21:16 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.7191399931907654 --> 0.7195199728012085
03-04 16:21:16 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 16:21:16 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 16:21:16 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7451599836349487 --> 0.7468600273132324
03-04 16:21:16 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 16:21:16 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 16:21:16 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6523000001907349 --> 0.6664400100708008
03-04 16:21:16 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 16:21:16 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 16:21:16 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 16:35:55 I ------------------
03-04 16:35:55 I Epoch 8 (E8_U10008_S10248192)
03-04 16:35:55 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 16:35:55 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.57007769
03-04 16:35:55 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.49566698
03-04 16:35:55 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.42757640
03-04 16:35:55 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.36643956
03-04 16:35:55 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.31250508
03-04 16:35:55 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.26674780
03-04 16:35:55 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.23023958
03-04 16:35:55 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.20585578
03-04 16:35:55 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.20076530
03-04 16:35:55 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.75948458
03-04 16:35:55 I loss/online/total: 13.83535875
03-04 16:36:28 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 16:36:29 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7220
03-04 16:36:29 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7262
03-04 16:36:29 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7304
03-04 16:36:29 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7343
03-04 16:36:29 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7381
03-04 16:36:29 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7412
03-04 16:36:29 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7449
03-04 16:36:29 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7480
03-04 16:36:29 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7505
03-04 16:36:29 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6790
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.7195199728012085 --> 0.722000002861023
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.7235599756240845 --> 0.7261999845504761
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.7265400290489197 --> 0.7303799986839294
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7303599715232849 --> 0.7343199849128723
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7345600128173828 --> 0.7380800247192383
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7388799786567688 --> 0.741159975528717
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.742680013179779 --> 0.744920015335083
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7459200024604797 --> 0.7480000257492065
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7468600273132324 --> 0.7505000233650208
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 16:36:29 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6664400100708008 --> 0.6789600253105164
03-04 16:36:29 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 16:36:29 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 16:36:29 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 16:51:09 I ------------------
03-04 16:51:09 I Epoch 9 (E9_U11259_S11529216)
03-04 16:51:09 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 16:51:09 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.54752848
03-04 16:51:09 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.47314982
03-04 16:51:09 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.40545378
03-04 16:51:09 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.34428949
03-04 16:51:09 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.29054086
03-04 16:51:09 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.24461104
03-04 16:51:09 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.20761973
03-04 16:51:09 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.18235534
03-04 16:51:09 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.17562083
03-04 16:51:09 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.68446095
03-04 16:51:09 I loss/online/total: 13.55563032
03-04 16:51:42 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 16:51:43 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7219
03-04 16:51:43 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7262
03-04 16:51:43 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7304
03-04 16:51:43 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7342
03-04 16:51:43 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7383
03-04 16:51:43 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7427
03-04 16:51:43 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7476
03-04 16:51:43 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7515
03-04 16:51:43 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7523
03-04 16:51:43 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6867
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7380800247192383 --> 0.738319993019104
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.741159975528717 --> 0.7426999807357788
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.744920015335083 --> 0.7476199865341187
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7480000257492065 --> 0.7514600157737732
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7505000233650208 --> 0.7523000240325928
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 16:51:43 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6789600253105164 --> 0.686739981174469
03-04 16:51:43 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 16:51:43 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 16:51:43 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 17:06:22 I ------------------
03-04 17:06:22 I Epoch 10 (E10_U12510_S12810240)
03-04 17:06:22 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 17:06:22 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.53284955
03-04 17:06:22 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.45878409
03-04 17:06:22 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.39113792
03-04 17:06:22 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.33008165
03-04 17:06:22 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.27627184
03-04 17:06:22 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.23027317
03-04 17:06:22 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.19324629
03-04 17:06:22 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.16754318
03-04 17:06:22 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.15949909
03-04 17:06:22 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.63079226
03-04 17:06:22 I loss/online/total: 13.37047903
03-04 17:06:55 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 17:06:56 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7233
03-04 17:06:56 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7278
03-04 17:06:56 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7313
03-04 17:06:56 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7360
03-04 17:06:56 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7400
03-04 17:06:56 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7445
03-04 17:06:56 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7483
03-04 17:06:56 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7522
03-04 17:06:56 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7551
03-04 17:06:56 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6931
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.722000002861023 --> 0.7233399748802185
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.7261999845504761 --> 0.727840006351471
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.7303799986839294 --> 0.7312999963760376
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7343199849128723 --> 0.7359799742698669
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.738319993019104 --> 0.7399600148200989
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7426999807357788 --> 0.7445200085639954
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7476199865341187 --> 0.7482600212097168
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7514600157737732 --> 0.7521799802780151
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7523000240325928 --> 0.755079984664917
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 17:06:56 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.686739981174469 --> 0.6931399703025818
03-04 17:06:56 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 17:06:56 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 17:06:56 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 17:21:36 I ------------------
03-04 17:21:36 I Epoch 11 (E11_U13761_S14091264)
03-04 17:21:36 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 17:21:36 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.51648934
03-04 17:21:36 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.44337897
03-04 17:21:36 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.37642544
03-04 17:21:36 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.31613199
03-04 17:21:36 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.26264255
03-04 17:21:36 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.21668169
03-04 17:21:36 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.17929822
03-04 17:21:36 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.15309190
03-04 17:21:36 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.14409901
03-04 17:21:36 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.58635039
03-04 17:21:36 I loss/online/total: 13.19458950
03-04 17:22:09 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 17:22:10 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7261
03-04 17:22:10 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7300
03-04 17:22:10 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7329
03-04 17:22:10 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7375
03-04 17:22:10 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7413
03-04 17:22:10 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7461
03-04 17:22:10 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7489
03-04 17:22:10 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7527
03-04 17:22:10 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7551
03-04 17:22:10 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.6988
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr01_wupcos_wd0_default): 0.7233399748802185 --> 0.7261000275611877
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr01_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr01_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr01_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr009_wupcos_wd0_default): 0.727840006351471 --> 0.729960024356842
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr009_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr009_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr009_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.7312999963760376 --> 0.7328600287437439
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7359799742698669 --> 0.7374799847602844
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7399600148200989 --> 0.7413399815559387
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7445200085639954 --> 0.7461000084877014
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7482600212097168 --> 0.7489200234413147
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7521799802780151 --> 0.7526999711990356
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.755079984664917 --> 0.7551199793815613
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 17:22:10 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6931399703025818 --> 0.6988199949264526
03-04 17:22:10 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 17:22:10 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 17:22:10 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 17:36:50 I ------------------
03-04 17:36:50 I Epoch 12 (E12_U15012_S15372288)
03-04 17:36:50 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 17:36:50 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.49668716
03-04 17:36:50 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.42504484
03-04 17:36:50 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.35960365
03-04 17:36:50 I loss/online/cls_sgd_lr007_wupcos_wd0_default: 1.30062138
03-04 17:36:50 I loss/online/cls_sgd_lr006_wupcos_wd0_default: 1.24841689
03-04 17:36:50 I loss/online/cls_sgd_lr005_wupcos_wd0_default: 1.20351937
03-04 17:36:50 I loss/online/cls_sgd_lr004_wupcos_wd0_default: 1.16698162
03-04 17:36:50 I loss/online/cls_sgd_lr003_wupcos_wd0_default: 1.14115041
03-04 17:36:50 I loss/online/cls_sgd_lr002_wupcos_wd0_default: 1.13191754
03-04 17:36:50 I loss/online/cls_sgd_lr001_wupcos_wd0_default: 1.55184135
03-04 17:36:50 I loss/online/total: 13.02578421
03-04 17:37:23 I accuracy_logger_test_iter=0.00 accuracy_logger_test_data=0.00 accuracy_logger_test_forward=0.67
03-04 17:37:24 I accuracy1/test/cls_sgd_lr01_wupcos_wd0_default: 0.7261
03-04 17:37:24 I accuracy1/test/cls_sgd_lr009_wupcos_wd0_default: 0.7297
03-04 17:37:24 I accuracy1/test/cls_sgd_lr008_wupcos_wd0_default: 0.7336
03-04 17:37:24 I accuracy1/test/cls_sgd_lr007_wupcos_wd0_default: 0.7377
03-04 17:37:24 I accuracy1/test/cls_sgd_lr006_wupcos_wd0_default: 0.7422
03-04 17:37:24 I accuracy1/test/cls_sgd_lr005_wupcos_wd0_default: 0.7475
03-04 17:37:24 I accuracy1/test/cls_sgd_lr004_wupcos_wd0_default: 0.7516
03-04 17:37:24 I accuracy1/test/cls_sgd_lr003_wupcos_wd0_default: 0.7548
03-04 17:37:24 I accuracy1/test/cls_sgd_lr002_wupcos_wd0_default: 0.7565
03-04 17:37:24 I accuracy1/test/cls_sgd_lr001_wupcos_wd0_default: 0.7034
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr008_wupcos_wd0_default): 0.7328600287437439 --> 0.7336199879646301
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr008_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr008_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr008_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr007_wupcos_wd0_default): 0.7374799847602844 --> 0.7376999855041504
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr007_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr007_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr007_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr006_wupcos_wd0_default): 0.7413399815559387 --> 0.7422199845314026
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr006_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr006_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr006_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr005_wupcos_wd0_default): 0.7461000084877014 --> 0.7474799752235413
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr005_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr005_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr005_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr004_wupcos_wd0_default): 0.7489200234413147 --> 0.751579999923706
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr004_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr004_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr004_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr003_wupcos_wd0_default): 0.7526999711990356 --> 0.7548400163650513
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr003_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr003_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr003_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr002_wupcos_wd0_default): 0.7551199793815613 --> 0.7564799785614014
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr002_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr002_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr002_wupcos_wd0_default.th
03-04 17:37:24 I new best model (accuracy1/test/cls_sgd_lr001_wupcos_wd0_default): 0.6988199949264526 --> 0.7033600211143494
03-04 17:37:24 I saved backbone_head.head.cls_sgd_lr001_wupcos_wd0_default to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/backbone_head.head.cls_sgd_lr001_wupcos_wd0_default cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default model.th
03-04 17:37:24 I saved trainer state_dict to /project/home/PROJECT/save/mlp/probe/10dwuvzu/checkpoints/trainer cp=best_model.accuracy1.test.cls_sgd_lr001_wupcos_wd0_default.th
03-04 17:37:24 I started dataloader iterator of AccuracyLogger(dataset_key=test)
03-04 17:52:04 I ------------------
03-04 17:52:04 I Epoch 13 (E13_U16263_S16653312)
03-04 17:52:04 I train_data=[0.00, 0.00, 0.00, 0.00] train=[0.70, 0.70, 0.70, 0.70]
03-04 17:52:04 I loss/online/cls_sgd_lr01_wupcos_wd0_default: 1.48243773
03-04 17:52:04 I loss/online/cls_sgd_lr009_wupcos_wd0_default: 1.41186606
03-04 17:52:04 I loss/online/cls_sgd_lr008_wupcos_wd0_default: 1.34745886