-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
DESCRIPTION
38 lines (38 loc) · 3.21 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Package: OpenImageR
Type: Package
Title: An Image Processing Toolkit
Version: 1.3.0
Date: 2023-07-08
Authors@R: c( person("Lampros", "Mouselimis", email = "[email protected]", role = c("aut", "cre"), comment = c(ORCID = "https://orcid.org/0000-0002-8024-1546")), person("Sight", "Machine", role = "cph", comment = "findHOGFeatures function of the SimpleCV computer vision platform"), person("Johannes", "Buchner", role = "cph", comment = "average_hash, dhash and phash functions of the ImageHash python library"), person("Mohammad", "Haghighat", email = "[email protected]", role = "cph", comment = "Gabor Feature Extraction"), person("Radhakrishna", "Achanta", email = "[email protected]", role = "cph", comment = "Author of the C++ code of the SLIC and SLICO algorithms (for commercial use please contact the author)"), person("Oleh", "Onyshchak", role = "cph", comment = "Author of the Python code of the WarpAffine function") )
Maintainer: Lampros Mouselimis <[email protected]>
BugReports: https://github.com/mlampros/OpenImageR/issues
URL: https://github.com/mlampros/OpenImageR
Description: Incorporates functions for image preprocessing, filtering and image recognition. The package takes advantage of 'RcppArmadillo' to speed up computationally intensive functions. The histogram of oriented gradients descriptor is a modification of the 'findHOGFeatures' function of the 'SimpleCV' computer vision platform, the average_hash(), dhash() and phash() functions are based on the 'ImageHash' python library. The Gabor Feature Extraction functions are based on 'Matlab' code of the paper, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification" by M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015, <doi:10.1016/j.eswa.2015.06.025>. The 'SLIC' and 'SLICO' superpixel algorithms were explained in detail in (i) "SLIC Superpixels Compared to State-of-the-art Superpixel Methods", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, num. 11, p. 2274-2282, May 2012, <doi:10.1109/TPAMI.2012.120> and (ii) "SLIC Superpixels", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, EPFL Technical Report no. 149300, June 2010.
License: GPL-3
Encoding: UTF-8
Copyright: inst/COPYRIGHTS
SystemRequirements: libarmadillo: apt-get install -y libarmadillo-dev (deb), libblas: apt-get install -y libblas-dev (deb), liblapack: apt-get install -y liblapack-dev (deb), libarpack++2: apt-get install -y libarpack++2-dev (deb), gfortran: apt-get install -y gfortran (deb), libjpeg-dev: apt-get install -y libjpeg-dev (deb), libpng-dev: apt-get install -y libpng-dev (deb), libfftw3-dev: apt-get install -y libfftw3-dev (deb), libtiff5-dev: apt-get install -y libtiff5-dev (deb)
Depends:
R(>= 3.2.3)
Imports:
Rcpp (>= 0.12.17),
graphics,
grDevices,
grid,
shiny,
jpeg,
png,
tiff,
R6,
lifecycle,
tools
LinkingTo:
Rcpp,
RcppArmadillo (>= 0.8.0)
Suggests:
testthat,
knitr,
rmarkdown,
covr
RoxygenNote: 7.2.3
VignetteBuilder: knitr