-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patharith.c
261 lines (245 loc) · 7.64 KB
/
arith.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#include "builtin.h"
#define IS_ARITH(v) !!(v&ARITH_t)
D_L1(arith) { return IS_ARITH(l); }
D_L2(arith) { return 2*IS_ARITH(r) + IS_ARITH(l); }
D_D1(arith) { return arith_l1(T(l)); }
D_D2(arith) { return arith_l2(T(l),T(r)); }
D_T2(arith) { return (l&r&Z_t) | ((l|r)&(Z_t|R_t) ? (l|r)&R_t : 0); }
// Monads
#define OP(op) { switch (T(l)) { M_L(Z,op); M_L(R,op); } del(l); }
#define M_L(T, op) case T##_t: set##T(p, op T(l)); break
D_P1(negate) OP(-);
#undef M_L
#define M_L(T, op) case T##_t: setZ(p, op(T(l))); break
D_P1(floor) OP(floor);
D_P1(ceiling) OP(ceiling);
#undef M_L
#undef OP
D_R1(negate) {
if (l!=Z_t && l!=R_t) return 0;
if (l==R_t) request_regs(a, 1);
return l;
}
D_A1(negate) {
switch (l) {
case Z_t: if (choose_reg(a)) ASM(a, MOV,a->o,a->i[0]);
ASM(a, NEG,-,a->o); return;
case R_t: { Reg i=a->i[0];
if (!choose_reg(a)) {
i=get_reg(a->u|1<<i);
ASM(a, MOVSD,i,a->i[0]);
}
ASM(a, PXOR,a->o,a->o);
ASM(a, SUBSD,a->o,i); return; }
}
}
D_R1(reciprocal) {
if (l&~(Z_t|R_t)) return 0;
request_regs(a, 1); return R_t;
}
D_A1(reciprocal) {
Reg i = choose_reg(a) ? a->i[0] : get_reg(a->u|1<<a->i[0]);
a_RfromT(a,l,i,a->i[0]);
ASM(a, MOV4_RI,a->o,1);
ASM(a, CVTSI2SD,a->o,a->o);
ASM(a, DIVSD,a->o,i);
}
#define ROUND(CMP,OP) \
I c=choose_reg(a); \
if (l==R_t) { \
Reg i=a->i[0], o=a->o, r=get_reg(a->u|1<<o); \
ASM(a, CVTTSD2SI,o,i); \
ASM(a, XOR4,r,r); \
ASM(a, CVTSI2SD,r,o); \
ASM(a, UCOMISD,r,i); \
ASM(a, SET##CMP,r,-); \
ASM(a, OP,o,r); \
} else if (c) ASM(a, MOV,a->o,a->i[0]);
D_R1(floor) {
if (l!=Z_t && l!=R_t) return 0;
if (l==R_t) request_regs(a, 1); return Z_t;
}
D_A1(floor) { ROUND(A,SUB) }
D_R1(ceiling) { return floor_r1(a,l); }
D_A1(ceiling) { ROUND(B,ADD) }
D_R1(sqroot) { return (l!=Z_t && l!=R_t) ? 0 : R_t; }
D_A1(sqroot) {
choose_reg(a);
if (l==Z_t) ASM(a, CVTSI2SD,a->i[0],a->i[0]);
ASM(a, SQRTSD,a->o,a->i[0]);
}
D_R1(square) { return (l!=Z_t && l!=R_t) ? 0 : l; }
D_A1(square) {
switch (l) {
case Z_t: if (choose_reg(a)) ASM(a, MOV,a->o,a->i[0]);
ASM(a, IMUL,a->o,a->o); return;
case R_t: if (choose_reg(a)) ASM(a, MOVSD,a->o,a->i[0]);
ASM(a, MULSD,a->o,a->o); return;
}
}
// Dyads
#define OP(op) { switch (max(T(l),T(r))) { DL(Z,op); DL(R,op); } del(l);del(r); }
#define DL(T, op) case T##_t: set##T(p, get##T(l)op get##T(r)); break
D_P2(plus) OP(+);
D_P2(minus) OP(-);
D_P2(times) OP(*);
#undef DL
#define DL(T, op) case T##_t: set##T(p, op(get##T(l), get##T(r))); break
D_P2(min) OP(min);
D_P2(max) OP(max);
#undef DL
#undef OP
// Make sure both arguments are in xmm registers. Cast if not.
// Move one argument to the result, and return its index in a->i.
I prepR(A a, I ii, T l, T r) {
I zr = 2*(l==R_t) + (r==R_t) - 1;
if (ii==2) ii = zr>=0&&zr<2 ? zr : 0;
a_RfromT(a,ii?r:l,a->o,a->i[ii]);
a_RfromT(a,ii?l:r,a->i[1-ii],a->i[1-ii]);
return ii;
}
// arith_t2 if the output is pure and inputs are arithmetic
T pure_t2(T l, T r) {
if ((l|r)&~(Z_t|R_t)) return 0;
T t=arith_t2(l,r); return IMPURE(t) ? 0 : t;
}
D_R2(plus) { return pure_t2(l,r); }
D_A2(plus) {
I ii=choose_regs(a);
switch (*a->ts) {
case Z_t: if (ii==2) ASM3(a, LEA1,a->o,a->i[0],a->i[1]);
else ASM(a, ADD,a->o,a->i[1-ii]); break;
case R_t: ii=prepR(a,ii,l,r);
ASM(a, ADDSD,a->o,a->i[1-ii]); break;
}
}
D_R2(minus) {
if ((l|r)&~(Z_t|R_t)) return 0;
T t=arith_t2(l,r); if IMPURE(t) return 0;
if (t==R_t) request_regs(a, 1); return t;
}
D_A2(minus) {
I ii=choose_regs(a);
switch (*a->ts) {
case Z_t: if (ii==2) ASM(a, MOV,a->o,a->i[ii=0]);
ASM(a, SUB,a->o,a->i[1-ii]);
if(ii) ASM(a,NEG,-,a->o);
break;
case R_t: ii=prepR(a,ii,l,r);
if (ii) {
Reg r=get_reg(a->u|1<<a->o);
if (r!=a->i[0]) ASM(a, MOVSD,r,a->i[0]);
ASM(a, SUBSD,r,a->o);
ASM(a, MOVSD,a->o,r);
} else {
ASM(a, SUBSD,a->o,a->i[1]);
}
break;
}
}
D_R2(times) { return pure_t2(l,r); }
D_A2(times) {
I ii=choose_regs(a);
switch (*a->ts) {
case Z_t: if (ii==2) ASM(a, MOV,a->o,a->i[ii=0]);
ASM(a, IMUL,a->o,a->i[1-ii]); break;
case R_t: ii=prepR(a,ii,l,r);
ASM(a, MULSD,a->o,a->i[1-ii]); break;
}
}
D_R2(divide) {
if ((l|r)&~(Z_t|R_t)) return 0;
request_regs(a, 1); return R_t;
}
D_A2(divide) {
Reg i1 = (choose_regs(a)==1) ? a->i[1]
: get_reg(a->u|1<<a->o|1<<a->i[0]);
a_RfromT(a,r,i1,a->i[1]);
a_RfromT(a,l,a->o,a->i[0]);
ASM(a, DIVSD,a->o,i1);
}
D_R2(mod) {
if ((l|r)&~(Z_t|R_t)) return 0;
T t=arith_t2(l,r); request_regs(a, 1+(t==R_t)); return t;
}
D_A2(mod) {
I n=2; // For PROTECT
switch (*a->ts) {
case Z_t: {
Reg r_=REG_IDIV_0, r1=REG_IDIV_1;
C shortcut = a->i[0]==r_;
PROTECT_START(1<<r_|1<<r1);
if (!shortcut) ASM(a, MOV,r_,a->i[0]);
ASM(a, CQO,-,-);
ASM(a, IDIV,a->i[1],-);
ASM(a, MOV,r_,a->i[1]);
ASM(a, XOR,r_,r1);
ASM(a, JNS,0,-); I j=a->l;
Reg rt;
if (a->u&1<<a->i[1]) ASM(a, MOV,rt=get_reg(a->u|1<<r_|1<<r1),a->i[1]);
else rt = a->i[1];
ASM(a, ADD,rt,r1);
ASM(a, TEST,r1,r1);
ASM(a, CMOVNE,r1,rt);
((C*)a->a)[j-1] = a->l-j;
if (a->o==NO_REG) a->o = a->u&1<<r1 ? get_reg(a->u) : r1;
if (a->o!=r1) ASM(a, MOV,a->o,r1);
UNPROTECT; return;
}
case R_t: {
I ii=choose_regs(a); ii=prepR(a,ii,l,r);
RegM u = a->u|1<<a->o|1<<a->i[0]|1<<a->i[1];
Reg rd = get_reg(u), rs = get_reg(u|1<<rd);
ASM(a, MOVSD,rd,a->i[0]);
ASM(a, DIVSD,rd,a->i[1]);
// Floor of rd (TODO: large values of rd)
ASM(a, CVTTSD2SI,rd,rd);
ASM(a, CVTSI2SD,rd,rd);
ASM(a, XOR4,rs,rs);
ASM(a, TEST,rd,rd);
ASM(a, SETS,rs,-);
ASM(a, CVTSI2SD,rs,rs);
ASM(a, SUBSD,rd,rs);
ASM(a, MULSD,rd,a->i[1]);
if (a->i[0]!=a->o) ASM(a, MOVSD,a->o,a->i[0]);
ASM(a, SUBSD,a->o,rd);
}
}
}
#define CMPZ(jj,OP) \
I ii=choose_regs(a); \
switch (*a->ts) { \
case Z_t: { I ifm=(ii==2); if (ifm) ii=1; \
ASM(a, CMP,a->i[1-(jj)],a->i[jj]); \
if (ifm) ASM(a, MOV,a->o,a->i[ii]); \
ASM(a, CMOVLE,a->o,a->i[1-ii]); break; } \
case R_t: ii=prepR(a,ii,l,r); \
ASM(a, OP##SD,a->o,a->i[1-ii]); break; \
}
D_R2(min) { return pure_t2(l,r); }
D_A2(min) { CMPZ(ii, MIN) }
D_R2(max) { return pure_t2(l,r); }
D_A2(max) { CMPZ(1-ii,MAX) }
#undef CMPZ
// EXPORT DEFINITIONS
void arith_init() {
#define SET(c, t, f) B_l1[c] = B_u1[c] = &arith_l1; B_t1[c] = &t##_t1; \
B_d1[c] = &arith_d1; B_r1[c] = &f##_r1; B_a1[c] = &f##_a1
SET('-', l, negate); DB(p1,'-',negate);
SET('/', R, reciprocal);
SET('m', Z, floor); DB(p1,'m',floor);
SET('M', Z, ceiling); DB(p1,'M',ceiling);
SET('q', l, square);
SET('Q', R, sqroot);
#undef SET
#define SET(c, f) B_l2[c] = B_u2[c] = &arith_l2; B_t2[c] = &arith_t2; \
B_d2[c] = &arith_d2; B_r2[c] = &f##_r2; B_a2[c] = &f##_a2
SET('+', plus); DB(p2,'+',plus);
SET('-', minus); DB(p2,'-',minus);
SET('*', times); DB(p2,'*',times);
SET('/', divide); DB(t2,'/',R);
SET('%', mod);
SET('m', min); DB(p2,'m',min);
SET('M', max); DB(p2,'M',max);
#undef SET
}