-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathpick.py
1210 lines (1064 loc) · 43.8 KB
/
pick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <[email protected]>
# Matti Hämäläinen <[email protected]>
# Martin Luessi <[email protected]>
#
# License: BSD-3-Clause
from copy import deepcopy
import re
import numpy as np
from .constants import FIFF
from ..utils import (logger, verbose, _validate_type, fill_doc, _ensure_int,
_check_option, warn)
def get_channel_type_constants(include_defaults=False):
"""Return all known channel types, and associated FIFF constants.
Parameters
----------
include_defaults : bool
Whether to include default values for "unit" and "coil_type" for all
entries (see Notes). Defaults are generally based on values normally
present for a VectorView MEG system. Defaults to ``False``.
Returns
-------
channel_types : dict
The keys are channel type strings, and the values are dictionaries of
FIFF constants for "kind", and possibly "unit" and "coil_type".
Notes
-----
Values which might vary within a channel type across real data
recordings are excluded unless ``include_defaults=True``. For example,
"ref_meg" channels may have coil type
``FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD``, ``FIFFV_COIL_VV_MAG_T3``, etc
(depending on the recording system), so no "coil_type" entry is given
for "ref_meg" unless ``include_defaults`` is requested.
"""
base = dict(grad=dict(kind=FIFF.FIFFV_MEG_CH, unit=FIFF.FIFF_UNIT_T_M),
mag=dict(kind=FIFF.FIFFV_MEG_CH, unit=FIFF.FIFF_UNIT_T),
ref_meg=dict(kind=FIFF.FIFFV_REF_MEG_CH),
eeg=dict(kind=FIFF.FIFFV_EEG_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG),
seeg=dict(kind=FIFF.FIFFV_SEEG_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG),
dbs=dict(kind=FIFF.FIFFV_DBS_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG),
ecog=dict(kind=FIFF.FIFFV_ECOG_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG),
eog=dict(kind=FIFF.FIFFV_EOG_CH, unit=FIFF.FIFF_UNIT_V),
emg=dict(kind=FIFF.FIFFV_EMG_CH, unit=FIFF.FIFF_UNIT_V),
ecg=dict(kind=FIFF.FIFFV_ECG_CH, unit=FIFF.FIFF_UNIT_V),
resp=dict(kind=FIFF.FIFFV_RESP_CH, unit=FIFF.FIFF_UNIT_V),
bio=dict(kind=FIFF.FIFFV_BIO_CH, unit=FIFF.FIFF_UNIT_V),
misc=dict(kind=FIFF.FIFFV_MISC_CH, unit=FIFF.FIFF_UNIT_V),
stim=dict(kind=FIFF.FIFFV_STIM_CH),
exci=dict(kind=FIFF.FIFFV_EXCI_CH),
syst=dict(kind=FIFF.FIFFV_SYST_CH),
ias=dict(kind=FIFF.FIFFV_IAS_CH),
gof=dict(kind=FIFF.FIFFV_GOODNESS_FIT),
dipole=dict(kind=FIFF.FIFFV_DIPOLE_WAVE),
chpi=dict(kind=[FIFF.FIFFV_QUAT_0, FIFF.FIFFV_QUAT_1,
FIFF.FIFFV_QUAT_2, FIFF.FIFFV_QUAT_3,
FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5,
FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G,
FIFF.FIFFV_HPI_ERR, FIFF.FIFFV_HPI_MOV]),
fnirs_cw_amplitude=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE),
fnirs_fd_ac_amplitude=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE),
fnirs_fd_phase=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_RAD,
coil_type=FIFF.FIFFV_COIL_FNIRS_FD_PHASE),
fnirs_od=dict(kind=FIFF.FIFFV_FNIRS_CH,
coil_type=FIFF.FIFFV_COIL_FNIRS_OD),
hbo=dict(kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_MOL,
coil_type=FIFF.FIFFV_COIL_FNIRS_HBO),
hbr=dict(kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_MOL,
coil_type=FIFF.FIFFV_COIL_FNIRS_HBR),
csd=dict(kind=FIFF.FIFFV_EEG_CH,
unit=FIFF.FIFF_UNIT_V_M2,
coil_type=FIFF.FIFFV_COIL_EEG_CSD))
if include_defaults:
coil_none = dict(coil_type=FIFF.FIFFV_COIL_NONE)
unit_none = dict(unit=FIFF.FIFF_UNIT_NONE)
defaults = dict(
grad=dict(coil_type=FIFF.FIFFV_COIL_VV_PLANAR_T1),
mag=dict(coil_type=FIFF.FIFFV_COIL_VV_MAG_T3),
ref_meg=dict(coil_type=FIFF.FIFFV_COIL_VV_MAG_T3,
unit=FIFF.FIFF_UNIT_T),
misc=dict(**coil_none, **unit_none), # NB: overwrites UNIT_V
stim=dict(unit=FIFF.FIFF_UNIT_V, **coil_none),
eog=coil_none,
ecg=coil_none,
emg=coil_none,
bio=coil_none,
fnirs_od=unit_none,
)
for key, value in defaults.items():
base[key].update(value)
return base
_first_rule = {
FIFF.FIFFV_MEG_CH: 'meg',
FIFF.FIFFV_REF_MEG_CH: 'ref_meg',
FIFF.FIFFV_EEG_CH: 'eeg',
FIFF.FIFFV_STIM_CH: 'stim',
FIFF.FIFFV_EOG_CH: 'eog',
FIFF.FIFFV_EMG_CH: 'emg',
FIFF.FIFFV_ECG_CH: 'ecg',
FIFF.FIFFV_RESP_CH: 'resp',
FIFF.FIFFV_MISC_CH: 'misc',
FIFF.FIFFV_EXCI_CH: 'exci',
FIFF.FIFFV_IAS_CH: 'ias',
FIFF.FIFFV_SYST_CH: 'syst',
FIFF.FIFFV_SEEG_CH: 'seeg',
FIFF.FIFFV_DBS_CH: 'dbs',
FIFF.FIFFV_BIO_CH: 'bio',
FIFF.FIFFV_QUAT_0: 'chpi',
FIFF.FIFFV_QUAT_1: 'chpi',
FIFF.FIFFV_QUAT_2: 'chpi',
FIFF.FIFFV_QUAT_3: 'chpi',
FIFF.FIFFV_QUAT_4: 'chpi',
FIFF.FIFFV_QUAT_5: 'chpi',
FIFF.FIFFV_QUAT_6: 'chpi',
FIFF.FIFFV_HPI_G: 'chpi',
FIFF.FIFFV_HPI_ERR: 'chpi',
FIFF.FIFFV_HPI_MOV: 'chpi',
FIFF.FIFFV_DIPOLE_WAVE: 'dipole',
FIFF.FIFFV_GOODNESS_FIT: 'gof',
FIFF.FIFFV_ECOG_CH: 'ecog',
FIFF.FIFFV_FNIRS_CH: 'fnirs',
}
# How to reduce our categories in channel_type (originally)
_second_rules = {
'meg': ('unit', {FIFF.FIFF_UNIT_T_M: 'grad',
FIFF.FIFF_UNIT_T: 'mag'}),
'fnirs': ('coil_type', {FIFF.FIFFV_COIL_FNIRS_HBO: 'hbo',
FIFF.FIFFV_COIL_FNIRS_HBR: 'hbr',
FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE:
'fnirs_cw_amplitude',
FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE:
'fnirs_fd_ac_amplitude',
FIFF.FIFFV_COIL_FNIRS_FD_PHASE:
'fnirs_fd_phase',
FIFF.FIFFV_COIL_FNIRS_OD: 'fnirs_od',
}),
'eeg': ('coil_type', {FIFF.FIFFV_COIL_EEG: 'eeg',
FIFF.FIFFV_COIL_EEG_BIPOLAR: 'eeg',
FIFF.FIFFV_COIL_NONE: 'eeg', # MNE-C backward compat
FIFF.FIFFV_COIL_EEG_CSD: 'csd',
})
}
@fill_doc
def channel_type(info, idx):
"""Get channel type.
Parameters
----------
%(info_not_none)s
idx : int
Index of channel.
Returns
-------
type : str
Type of channel. Will be one of::
{'grad', 'mag', 'eeg', 'csd', 'stim', 'eog', 'emg', 'ecg',
'ref_meg', 'resp', 'exci', 'ias', 'syst', 'misc', 'seeg', 'dbs',
'bio', 'chpi', 'dipole', 'gof', 'ecog', 'hbo', 'hbr'}
"""
# This is faster than the original _channel_type_old now in test_pick.py
# because it uses (at most!) two dict lookups plus one conditional
# to get the channel type string.
ch = info['chs'][idx]
try:
first_kind = _first_rule[ch['kind']]
except KeyError:
raise ValueError('Unknown channel type (%s) for channel "%s"'
% (ch['kind'], ch["ch_name"]))
if first_kind in _second_rules:
key, second_rule = _second_rules[first_kind]
first_kind = second_rule[ch[key]]
return first_kind
def pick_channels(ch_names, include, exclude=[], ordered=False):
"""Pick channels by names.
Returns the indices of ``ch_names`` in ``include`` but not in ``exclude``.
Parameters
----------
ch_names : list of str
List of channels.
include : list of str
List of channels to include (if empty include all available).
.. note:: This is to be treated as a set. The order of this list
is not used or maintained in ``sel``.
exclude : list of str
List of channels to exclude (if empty do not exclude any channel).
Defaults to [].
ordered : bool
If true (default False), treat ``include`` as an ordered list
rather than a set, and any channels from ``include`` are missing
in ``ch_names`` an error will be raised.
.. versionadded:: 0.18
Returns
-------
sel : array of int
Indices of good channels.
See Also
--------
pick_channels_regexp, pick_types
"""
if len(np.unique(ch_names)) != len(ch_names):
raise RuntimeError('ch_names is not a unique list, picking is unsafe')
_check_excludes_includes(include)
_check_excludes_includes(exclude)
if not ordered:
if not isinstance(include, set):
include = set(include)
if not isinstance(exclude, set):
exclude = set(exclude)
sel = []
for k, name in enumerate(ch_names):
if (len(include) == 0 or name in include) and name not in exclude:
sel.append(k)
else:
if not isinstance(include, list):
include = list(include)
if len(include) == 0:
include = list(ch_names)
if not isinstance(exclude, list):
exclude = list(exclude)
sel, missing = list(), list()
for name in include:
if name in ch_names:
if name not in exclude:
sel.append(ch_names.index(name))
else:
missing.append(name)
if len(missing):
raise ValueError('Missing channels from ch_names required by '
'include:\n%s' % (missing,))
return np.array(sel, int)
def pick_channels_regexp(ch_names, regexp):
"""Pick channels using regular expression.
Returns the indices of the good channels in ch_names.
Parameters
----------
ch_names : list of str
List of channels.
regexp : str
The regular expression. See python standard module for regular
expressions.
Returns
-------
sel : array of int
Indices of good channels.
See Also
--------
pick_channels
Examples
--------
>>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG ...1')
[0]
>>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG *')
[0, 1, 2]
"""
r = re.compile(regexp)
return [k for k, name in enumerate(ch_names) if r.match(name)]
def _triage_meg_pick(ch, meg):
"""Triage an MEG pick type."""
if meg is True:
return True
elif ch['unit'] == FIFF.FIFF_UNIT_T_M:
if meg == 'grad':
return True
elif meg == 'planar1' and ch['ch_name'].endswith('2'):
return True
elif meg == 'planar2' and ch['ch_name'].endswith('3'):
return True
elif (meg == 'mag' and ch['unit'] == FIFF.FIFF_UNIT_T):
return True
return False
def _triage_fnirs_pick(ch, fnirs, warned):
"""Triage an fNIRS pick type."""
if fnirs is True:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO and 'hbo' in fnirs:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBR and 'hbr' in fnirs:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE and \
'fnirs_cw_amplitude' in fnirs:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE and \
'fnirs_fd_ac_amplitude' in fnirs:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_FD_PHASE and \
'fnirs_fd_phase' in fnirs:
return True
elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_OD and 'fnirs_od' in fnirs:
return True
return False
def _check_meg_type(meg, allow_auto=False):
"""Ensure a valid meg type."""
if isinstance(meg, str):
allowed_types = ['grad', 'mag', 'planar1', 'planar2']
allowed_types += ['auto'] if allow_auto else []
if meg not in allowed_types:
raise ValueError('meg value must be one of %s or bool, not %s'
% (allowed_types, meg))
def _check_info_exclude(info, exclude):
_validate_type(info, "info")
info._check_consistency()
if exclude is None:
raise ValueError('exclude must be a list of strings or "bads"')
elif exclude == 'bads':
exclude = info.get('bads', [])
elif not isinstance(exclude, (list, tuple)):
raise ValueError('exclude must either be "bads" or a list of strings.'
' If only one channel is to be excluded, use '
'[ch_name] instead of passing ch_name.')
return exclude
@fill_doc
def pick_types(info, meg=False, eeg=False, stim=False, eog=False, ecg=False,
emg=False, ref_meg='auto', misc=False, resp=False, chpi=False,
exci=False, ias=False, syst=False, seeg=False, dipole=False,
gof=False, bio=False, ecog=False, fnirs=False, csd=False,
dbs=False, include=(), exclude='bads', selection=None):
"""Pick channels by type and names.
Parameters
----------
%(info_not_none)s
meg : bool | str
If True include MEG channels. If string it can be 'mag', 'grad',
'planar1' or 'planar2' to select only magnetometers, all gradiometers,
or a specific type of gradiometer.
eeg : bool
If True include EEG channels.
stim : bool
If True include stimulus channels.
eog : bool
If True include EOG channels.
ecg : bool
If True include ECG channels.
emg : bool
If True include EMG channels.
ref_meg : bool | str
If True include CTF / 4D reference channels. If 'auto', reference
channels are included if compensations are present and ``meg`` is not
False. Can also be the string options for the ``meg`` parameter.
misc : bool
If True include miscellaneous analog channels.
resp : bool
If True include response-trigger channel. For some MEG systems this
is separate from the stim channel.
chpi : bool
If True include continuous HPI coil channels.
exci : bool
Flux excitation channel used to be a stimulus channel.
ias : bool
Internal Active Shielding data (maybe on Triux only).
syst : bool
System status channel information (on Triux systems only).
seeg : bool
Stereotactic EEG channels.
dipole : bool
Dipole time course channels.
gof : bool
Dipole goodness of fit channels.
bio : bool
Bio channels.
ecog : bool
Electrocorticography channels.
fnirs : bool | str
Functional near-infrared spectroscopy channels. If True include all
fNIRS channels. If False (default) include none. If string it can be
'hbo' (to include channels measuring oxyhemoglobin) or 'hbr' (to
include channels measuring deoxyhemoglobin).
csd : bool
Current source density channels.
dbs : bool
Deep brain stimulation channels.
include : list of str
List of additional channels to include. If empty do not include any.
exclude : list of str | str
List of channels to exclude. If 'bads' (default), exclude channels
in ``info['bads']``.
selection : list of str
Restrict sensor channels (MEG, EEG) to this list of channel names.
Returns
-------
sel : array of int
Indices of good channels.
"""
# NOTE: Changes to this function's signature should also be changed in
# PickChannelsMixin
_validate_type(meg, (bool, str), 'meg')
exclude = _check_info_exclude(info, exclude)
nchan = info['nchan']
pick = np.zeros(nchan, dtype=bool)
_check_meg_type(ref_meg, allow_auto=True)
_check_meg_type(meg)
if isinstance(ref_meg, str) and ref_meg == 'auto':
ref_meg = ('comps' in info and info['comps'] is not None and
len(info['comps']) > 0 and meg is not False)
for param in (eeg, stim, eog, ecg, emg, misc, resp, chpi, exci,
ias, syst, seeg, dipole, gof, bio, ecog, csd, dbs):
if not isinstance(param, bool):
w = ('Parameters for all channel types (with the exception of '
'"meg", "ref_meg" and "fnirs") must be of type bool, not {}.')
raise ValueError(w.format(type(param)))
param_dict = dict(eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg,
misc=misc, resp=resp, chpi=chpi, exci=exci,
ias=ias, syst=syst, seeg=seeg, dbs=dbs, dipole=dipole,
gof=gof, bio=bio, ecog=ecog, csd=csd)
# avoid triage if possible
if isinstance(meg, bool):
for key in ('grad', 'mag'):
param_dict[key] = meg
if isinstance(fnirs, bool):
for key in _FNIRS_CH_TYPES_SPLIT:
param_dict[key] = fnirs
warned = [False]
for k in range(nchan):
ch_type = channel_type(info, k)
try:
pick[k] = param_dict[ch_type]
except KeyError: # not so simple
assert ch_type in (
'grad', 'mag', 'ref_meg') + _FNIRS_CH_TYPES_SPLIT
if ch_type in ('grad', 'mag'):
pick[k] = _triage_meg_pick(info['chs'][k], meg)
elif ch_type == 'ref_meg':
pick[k] = _triage_meg_pick(info['chs'][k], ref_meg)
else: # ch_type in ('hbo', 'hbr')
pick[k] = _triage_fnirs_pick(info['chs'][k], fnirs, warned)
# restrict channels to selection if provided
if selection is not None:
# the selection only restricts these types of channels
sel_kind = [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH,
FIFF.FIFFV_EEG_CH]
for k in np.where(pick)[0]:
if (info['chs'][k]['kind'] in sel_kind and
info['ch_names'][k] not in selection):
pick[k] = False
myinclude = [info['ch_names'][k] for k in range(nchan) if pick[k]]
myinclude += include
if len(myinclude) == 0:
sel = np.array([], int)
else:
sel = pick_channels(info['ch_names'], myinclude, exclude)
return sel
@verbose
def pick_info(info, sel=(), copy=True, verbose=None):
"""Restrict an info structure to a selection of channels.
Parameters
----------
%(info_not_none)s
sel : list of int | None
Indices of channels to include. If None, all channels
are included.
copy : bool
If copy is False, info is modified inplace.
%(verbose)s
Returns
-------
res : dict
Info structure restricted to a selection of channels.
"""
# avoid circular imports
from .meas_info import _bad_chans_comp
info._check_consistency()
info = info.copy() if copy else info
if sel is None:
return info
elif len(sel) == 0:
raise ValueError('No channels match the selection.')
n_unique = len(np.unique(np.arange(len(info['ch_names']))[sel]))
if n_unique != len(sel):
raise ValueError('Found %d / %d unique names, sel is not unique'
% (n_unique, len(sel)))
# make sure required the compensation channels are present
if len(info.get('comps', [])) > 0:
ch_names = [info['ch_names'][idx] for idx in sel]
_, comps_missing = _bad_chans_comp(info, ch_names)
if len(comps_missing) > 0:
logger.info('Removing %d compensators from info because '
'not all compensation channels were picked.'
% (len(info['comps']),))
with info._unlock():
info['comps'] = []
with info._unlock():
info['chs'] = [info['chs'][k] for k in sel]
info._update_redundant()
info['bads'] = [ch for ch in info['bads'] if ch in info['ch_names']]
if 'comps' in info:
comps = deepcopy(info['comps'])
for c in comps:
row_idx = [k for k, n in enumerate(c['data']['row_names'])
if n in info['ch_names']]
row_names = [c['data']['row_names'][i] for i in row_idx]
rowcals = c['rowcals'][row_idx]
c['rowcals'] = rowcals
c['data']['nrow'] = len(row_names)
c['data']['row_names'] = row_names
c['data']['data'] = c['data']['data'][row_idx]
with info._unlock():
info['comps'] = comps
info._check_consistency()
return info
def _has_kit_refs(info, picks):
"""Determine if KIT ref channels are chosen.
This is currently only used by make_forward_solution, which cannot
run when KIT reference channels are included.
"""
for p in picks:
if info['chs'][p]['coil_type'] == FIFF.FIFFV_COIL_KIT_REF_MAG:
return True
return False
def pick_channels_evoked(orig, include=[], exclude='bads'):
"""Pick channels from evoked data.
Parameters
----------
orig : Evoked object
One evoked dataset.
include : list of str, (optional)
List of channels to include (if empty, include all available).
exclude : list of str | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in orig.info['bads']. Defaults to 'bads'.
Returns
-------
res : instance of Evoked
Evoked data restricted to selected channels. If include and
exclude are empty it returns orig without copy.
"""
if len(include) == 0 and len(exclude) == 0:
return orig
exclude = _check_excludes_includes(exclude, info=orig.info,
allow_bads=True)
sel = pick_channels(orig.info['ch_names'], include=include,
exclude=exclude)
if len(sel) == 0:
raise ValueError('Warning : No channels match the selection.')
res = deepcopy(orig)
#
# Modify the measurement info
#
res.info = pick_info(res.info, sel)
#
# Create the reduced data set
#
res.data = res.data[sel, :]
return res
@verbose
def pick_channels_forward(orig, include=[], exclude=[], ordered=False,
copy=True, verbose=None):
"""Pick channels from forward operator.
Parameters
----------
orig : dict
A forward solution.
include : list of str
List of channels to include (if empty, include all available).
Defaults to [].
exclude : list of str | 'bads'
Channels to exclude (if empty, do not exclude any). Defaults to [].
If 'bads', then exclude bad channels in orig.
ordered : bool
If true (default False), treat ``include`` as an ordered list
rather than a set.
.. versionadded:: 0.18
copy : bool
If True (default), make a copy.
.. versionadded:: 0.19
%(verbose)s
Returns
-------
res : dict
Forward solution restricted to selected channels. If include and
exclude are empty it returns orig without copy.
"""
orig['info']._check_consistency()
if len(include) == 0 and len(exclude) == 0:
return orig.copy() if copy else orig
exclude = _check_excludes_includes(exclude,
info=orig['info'], allow_bads=True)
# Allow for possibility of channel ordering in forward solution being
# different from that of the M/EEG file it is based on.
sel_sol = pick_channels(orig['sol']['row_names'], include=include,
exclude=exclude, ordered=ordered)
sel_info = pick_channels(orig['info']['ch_names'], include=include,
exclude=exclude, ordered=ordered)
fwd = deepcopy(orig) if copy else orig
# Check that forward solution and original data file agree on #channels
if len(sel_sol) != len(sel_info):
raise ValueError('Forward solution and functional data appear to '
'have different channel names, please check.')
# Do we have something?
nuse = len(sel_sol)
if nuse == 0:
raise ValueError('Nothing remains after picking')
logger.info(' %d out of %d channels remain after picking'
% (nuse, fwd['nchan']))
# Pick the correct rows of the forward operator using sel_sol
fwd['sol']['data'] = fwd['sol']['data'][sel_sol, :]
fwd['_orig_sol'] = fwd['_orig_sol'][sel_sol, :]
fwd['sol']['nrow'] = nuse
ch_names = [fwd['sol']['row_names'][k] for k in sel_sol]
fwd['nchan'] = nuse
fwd['sol']['row_names'] = ch_names
# Pick the appropriate channel names from the info-dict using sel_info
with fwd['info']._unlock():
fwd['info']['chs'] = [fwd['info']['chs'][k] for k in sel_info]
fwd['info']._update_redundant()
fwd['info']['bads'] = [b for b in fwd['info']['bads'] if b in ch_names]
if fwd['sol_grad'] is not None:
fwd['sol_grad']['data'] = fwd['sol_grad']['data'][sel_sol, :]
fwd['_orig_sol_grad'] = fwd['_orig_sol_grad'][sel_sol, :]
fwd['sol_grad']['nrow'] = nuse
fwd['sol_grad']['row_names'] = [fwd['sol_grad']['row_names'][k]
for k in sel_sol]
return fwd
def pick_types_forward(orig, meg=False, eeg=False, ref_meg=True, seeg=False,
ecog=False, dbs=False, include=[], exclude=[]):
"""Pick by channel type and names from a forward operator.
Parameters
----------
orig : dict
A forward solution.
meg : bool | str
If True include MEG channels. If string it can be 'mag', 'grad',
'planar1' or 'planar2' to select only magnetometers, all gradiometers,
or a specific type of gradiometer.
eeg : bool
If True include EEG channels.
ref_meg : bool
If True include CTF / 4D reference channels.
seeg : bool
If True include stereotactic EEG channels.
ecog : bool
If True include electrocorticography channels.
dbs : bool
If True include deep brain stimulation channels.
include : list of str
List of additional channels to include. If empty do not include any.
exclude : list of str | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in orig['info']['bads'].
Returns
-------
res : dict
Forward solution restricted to selected channel types.
"""
info = orig['info']
sel = pick_types(info, meg, eeg, ref_meg=ref_meg, seeg=seeg,
ecog=ecog, dbs=dbs, include=include, exclude=exclude)
if len(sel) == 0:
raise ValueError('No valid channels found')
include_ch_names = [info['ch_names'][k] for k in sel]
return pick_channels_forward(orig, include_ch_names)
@fill_doc
def channel_indices_by_type(info, picks=None):
"""Get indices of channels by type.
Parameters
----------
%(info_not_none)s
%(picks_all)s
Returns
-------
idx_by_type : dict
A dictionary that maps each channel type to a (possibly empty) list of
channel indices.
"""
idx_by_type = {key: list() for key in _PICK_TYPES_KEYS if
key not in ('meg', 'fnirs')}
idx_by_type.update(mag=list(), grad=list(), hbo=list(), hbr=list(),
fnirs_cw_amplitude=list(), fnirs_fd_ac_amplitude=list(),
fnirs_fd_phase=list(), fnirs_od=list())
picks = _picks_to_idx(info, picks,
none='all', exclude=(), allow_empty=True)
for k in picks:
ch_type = channel_type(info, k)
for key in idx_by_type.keys():
if ch_type == key:
idx_by_type[key].append(k)
return idx_by_type
def pick_channels_cov(orig, include=[], exclude='bads', ordered=False,
copy=True):
"""Pick channels from covariance matrix.
Parameters
----------
orig : Covariance
A covariance.
include : list of str, (optional)
List of channels to include (if empty, include all available).
exclude : list of str, (optional) | 'bads'
Channels to exclude (if empty, do not exclude any). Defaults to 'bads'.
ordered : bool
If True (default False), ensure that the order of the channels in the
modified instance matches the order of ``include``.
.. versionadded:: 0.20.0
copy : bool
If True (the default), return a copy of the covariance matrix with the
modified channels. If False, channels are modified in-place.
.. versionadded:: 0.20.0
Returns
-------
res : dict
Covariance solution restricted to selected channels.
"""
if copy:
orig = orig.copy()
# A little peculiarity of the cov objects is that these two fields
# should not be copied over when None.
if 'method' in orig and orig['method'] is None:
del orig['method']
if 'loglik' in orig and orig['loglik'] is None:
del orig['loglik']
exclude = orig['bads'] if exclude == 'bads' else exclude
sel = pick_channels(orig['names'], include=include, exclude=exclude,
ordered=ordered)
data = orig['data'][sel][:, sel] if not orig['diag'] else orig['data'][sel]
names = [orig['names'][k] for k in sel]
bads = [name for name in orig['bads'] if name in orig['names']]
orig['data'] = data
orig['names'] = names
orig['bads'] = bads
orig['dim'] = len(data)
return orig
def _mag_grad_dependent(info):
"""Determine of mag and grad should be dealt with jointly."""
# right now just uses SSS, could be computed / checked from cov
# but probably overkill
return any(ph.get('max_info', {}).get('sss_info', {}).get('in_order', 0)
for ph in info.get('proc_history', []))
@fill_doc
def _contains_ch_type(info, ch_type):
"""Check whether a certain channel type is in an info object.
Parameters
----------
%(info_not_none)s
ch_type : str
the channel type to be checked for
Returns
-------
has_ch_type : bool
Whether the channel type is present or not.
"""
_validate_type(ch_type, 'str', "ch_type")
meg_extras = list(_MEG_CH_TYPES_SPLIT)
fnirs_extras = list(_FNIRS_CH_TYPES_SPLIT)
valid_channel_types = sorted([key for key in _PICK_TYPES_KEYS
if key != 'meg'] + meg_extras + fnirs_extras)
_check_option('ch_type', ch_type, valid_channel_types)
if info is None:
raise ValueError('Cannot check for channels of type "%s" because info '
'is None' % (ch_type,))
return any(ch_type == channel_type(info, ii)
for ii in range(info['nchan']))
@fill_doc
def _picks_by_type(info, meg_combined=False, ref_meg=False, exclude='bads'):
"""Get data channel indices as separate list of tuples.
Parameters
----------
%(info_not_none)s
meg_combined : bool | 'auto'
Whether to return combined picks for grad and mag.
Can be 'auto' to choose based on Maxwell filtering status.
ref_meg : bool
If True include CTF / 4D reference channels
exclude : list of str | str
List of channels to exclude. If 'bads' (default), exclude channels
in info['bads'].
Returns
-------
picks_list : list of tuples
The list of tuples of picks and the type string.
"""
_validate_type(ref_meg, bool, 'ref_meg')
exclude = _check_info_exclude(info, exclude)
if meg_combined == 'auto':
meg_combined = _mag_grad_dependent(info)
picks_list = []
picks_list = {ch_type: list() for ch_type in _DATA_CH_TYPES_SPLIT}
for k in range(info['nchan']):
if info['chs'][k]['ch_name'] not in exclude:
this_type = channel_type(info, k)
try:
picks_list[this_type].append(k)
except KeyError:
# This annoyance is due to differences in pick_types
# and channel_type behavior
if this_type == 'ref_meg':
ch = info['chs'][k]
if _triage_meg_pick(ch, ref_meg):
if ch['unit'] == FIFF.FIFF_UNIT_T:
picks_list['mag'].append(k)
elif ch['unit'] == FIFF.FIFF_UNIT_T_M:
picks_list['grad'].append(k)
else:
pass # not a data channel type
picks_list = [(ch_type, np.array(picks_list[ch_type], int))
for ch_type in _DATA_CH_TYPES_SPLIT]
assert _DATA_CH_TYPES_SPLIT[:2] == ('mag', 'grad')
if meg_combined and len(picks_list[0][1]) and len(picks_list[1][1]):
picks_list.insert(
0, ('meg', np.unique(np.concatenate([picks_list.pop(0)[1],
picks_list.pop(0)[1]])))
)
picks_list = [p for p in picks_list if len(p[1])]
return picks_list
def _check_excludes_includes(chs, info=None, allow_bads=False):
"""Ensure that inputs to exclude/include are list-like or "bads".
Parameters
----------
chs : any input, should be list, tuple, set, str
The channels passed to include or exclude.
allow_bads : bool
Allow the user to supply "bads" as a string for auto exclusion.
Returns
-------
chs : list
Channels to be excluded/excluded. If allow_bads, and chs=="bads",
this will be the bad channels found in 'info'.
"""
from .meas_info import Info
if not isinstance(chs, (list, tuple, set, np.ndarray)):
if allow_bads is True:
if not isinstance(info, Info):
raise ValueError('Supply an info object if allow_bads is true')
elif chs != 'bads':
raise ValueError('If chs is a string, it must be "bads"')
else:
chs = info['bads']
else:
raise ValueError(
'include/exclude must be list, tuple, ndarray, or "bads". ' +
'You provided type {}'.format(type(chs)))
return chs
_PICK_TYPES_DATA_DICT = dict(
meg=True, eeg=True, csd=True, stim=False, eog=False, ecg=False, emg=False,
misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False,
seeg=True, dipole=False, gof=False, bio=False, ecog=True, fnirs=True,
dbs=True)
_PICK_TYPES_KEYS = tuple(list(_PICK_TYPES_DATA_DICT) + ['ref_meg'])
_MEG_CH_TYPES_SPLIT = ('mag', 'grad', 'planar1', 'planar2')
_FNIRS_CH_TYPES_SPLIT = ('hbo', 'hbr', 'fnirs_cw_amplitude',
'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', 'fnirs_od')
_DATA_CH_TYPES_ORDER_DEFAULT = (
'mag', 'grad', 'eeg', 'csd', 'eog', 'ecg', 'resp', 'emg', 'ref_meg',
'misc', 'stim', 'chpi', 'exci', 'ias', 'syst', 'seeg', 'bio', 'ecog',
'dbs') + _FNIRS_CH_TYPES_SPLIT + ('whitened',)
# Valid data types, ordered for consistency, used in viz/evoked.
_VALID_CHANNEL_TYPES = (
'eeg', 'grad', 'mag', 'seeg', 'eog', 'ecg', 'resp', 'emg', 'dipole', 'gof',
'bio', 'ecog', 'dbs') + _FNIRS_CH_TYPES_SPLIT + ('misc', 'csd')
_DATA_CH_TYPES_SPLIT = (
'mag', 'grad', 'eeg', 'csd', 'seeg', 'ecog', 'dbs') + _FNIRS_CH_TYPES_SPLIT
def _pick_data_channels(info, exclude='bads', with_ref_meg=True,
with_aux=False):
"""Pick only data channels."""
kwargs = _PICK_TYPES_DATA_DICT
if with_aux:
kwargs = kwargs.copy()
kwargs.update(eog=True, ecg=True, emg=True, bio=True)
return pick_types(info, ref_meg=with_ref_meg, exclude=exclude, **kwargs)
def _pick_data_or_ica(info, exclude=()):
"""Pick only data or ICA channels."""
if any(ch_name.startswith('ICA') for ch_name in info['ch_names']):
picks = pick_types(info, exclude=exclude, misc=True)