This repository has been archived by the owner on Feb 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 78
/
result_tables.py
202 lines (134 loc) · 6.57 KB
/
result_tables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
def generate_result_tables(repo_dir, data_dir):
""" Generate the cross-check result tables """
import csv
from fmpy.cross_check import get_vendor_ids
combinations = [] # all permutations of FMI version, type and platform
for fmi_version in ['1.0', '2.0']:
for fmi_type in ['cs', 'me']:
for platform in ['c-code', 'darwin64', 'linux32', 'linux64', 'win32', 'win64']:
combinations.append((fmi_version, fmi_type, platform))
tools_csv = os.path.join(data_dir, 'tools.csv')
vendors = get_vendor_ids(tools_csv)
tools = {} # tool_id -> tool_name
for tool_infos in vendors.values():
for tool_id, tool_name in tool_infos:
tools[tool_id] = tool_name
def split_path(path):
segments = []
while True:
path, segment = os.path.split(path)
if not segment:
break
segments.insert(0, segment)
return segments
def collect_results():
results = []
vendor_repo = os.path.join(repo_dir, 'results')
for root, dirs, files in os.walk(vendor_repo):
if 'passed' not in files:
continue # ignore
if 'notCompliantWithLatestRules' in files:
continue # ignore
segments = split_path(root)
fmi_version, fmi_type, platform, _, _, exporting_tool_name, exporting_tool_version, model_name = segments[-8:]
not_compliant_file = os.path.join(repo_dir, 'fmus', fmi_version, fmi_type, platform, exporting_tool_name, exporting_tool_version, model_name, 'notCompliantWithLatestRules')
if os.path.isfile(not_compliant_file):
continue # ignore
results.append(segments[-8:])
return results
def build_matrix(results, fmi_version, fmi_type, platform):
""" Build the result matrix for an FMI version, type and platform """
importing_tools = set()
exporting_tools = set()
filtered = []
# get the tools
for fmi_version_, fmi_type_, platform_, importing_tool_name, importing_tool_version, exporting_tool_name, exporting_tool_version, model_name in results:
if fmi_version_ != fmi_version or fmi_type_ != fmi_type or platform_ != platform:
continue
importing_tools.add(importing_tool_name)
exporting_tools.add(exporting_tool_name)
filtered.append((importing_tool_name, importing_tool_version, exporting_tool_name, exporting_tool_version, model_name))
# build matrix
importing_tools = sorted(importing_tools, key=lambda s: s.lower())
exporting_tools = sorted(exporting_tools, key=lambda s: s.lower())
matrix = []
for importing_tool in importing_tools:
row = []
for exporting_tool in exporting_tools:
count = 0
for r in filtered:
if r[0] == importing_tool and r[2] == exporting_tool:
count += 1
row.append(count)
matrix.append(row)
return importing_tools, exporting_tools, matrix
results = collect_results()
# filter tool IDs
results = [r for r in results if r[3] in tools and r[5] in tools]
matrices = {}
for combination in combinations:
matrices[combination] = build_matrix(results, *combination)
for fmi_version, fmi_type, platform in combinations:
importing_tools, exporting_tools, matrix = matrices[(fmi_version, fmi_type, platform)]
importing_tools = [tools[tool_id] for tool_id in importing_tools]
exporting_tools = [tools[tool_id] for tool_id in exporting_tools]
csv_filename = 'fmi1' if fmi_version == '1.0' else 'fmi2'
csv_filename += '-'
csv_filename += fmi_type
csv_filename += '-'
csv_filename += platform + '.csv'
with open(os.path.join(data_dir, 'cross-check', csv_filename), 'w') as f:
f.write(','.join([''] + exporting_tools) + '\n')
for importing_tool, row in zip(importing_tools, matrix):
f.write(','.join([importing_tool] + list(map(str, row))) + '\n')
participants = set()
# generate the tools file with cross-check results
export_passed = {}
import_passed = {}
for fmi_version, fmi_type, platform, importing_tool_name, importing_tool_version, exporting_tool_name, exporting_tool_version, model_name in results:
key = (exporting_tool_name, fmi_version, fmi_type)
participants.add(exporting_tool_name)
participants.add(importing_tool_name)
if key not in export_passed:
export_passed[key] = {}
if importing_tool_name not in export_passed[key]:
export_passed[key][importing_tool_name] = {model_name}
else:
export_passed[key][importing_tool_name].add(model_name)
key = (importing_tool_name, fmi_version, fmi_type)
if key not in import_passed:
import_passed[key] = {}
if exporting_tool_name not in import_passed[key]:
import_passed[key][exporting_tool_name] = {model_name}
else:
import_passed[key][exporting_tool_name].add(model_name)
# aggregate the results
participants = sorted(participants, key=lambda s: s.lower())
rows = [participants]
def check_passed(key, d):
cnt = 0
for vendor, models in d.get(key, {}).items():
if len(models) >= 3:
cnt += 1
return cnt >= 3
for results in [export_passed, import_passed]:
for i, c in enumerate([('cs', '1.0'), ('cs', '2.0'), ('me', '1.0'), ('me', '2.0')]):
fmi_type, fmi_version = c
row = []
for tool_id in participants:
key = (tool_id, fmi_version, fmi_type)
row.append('passed' if check_passed(key, results) else '')
rows.append(row)
with open(os.path.join(data_dir, 'cross-check', 'result.csv'), 'w', newline='') as f:
writer = csv.writer(f)
writer.writerows(rows)
if __name__ == '__main__':
# parse command-line arguments
parser = argparse.ArgumentParser(description='fmi-cross-check: result_tables.py', allow_abbrev=False)
parser.add_argument('--data-dir', default='', type=str, help='_data directory of fmi-standard.org')
args = parser.parse_args()
repo_dir = os.path.dirname(__file__)
data_dir = args.data_dir if args.data_dir else os.path.join(os.path.dirname(repo_dir), 'fmi-standard.org', '_data')
generate_result_tables(repo_dir=repo_dir, data_dir=data_dir)