diff --git a/sympy.rst b/sympy.rst index 66ffb8a3..877b1df0 100644 --- a/sympy.rst +++ b/sympy.rst @@ -698,8 +698,8 @@ Both the ``*`` and the ``@`` operator perform matrix multiplication: mat1@mat2 -Element-by-element multiplication requires the ``sympy.hadamard_product()`` -function: +Element-by-element multiplication requires the +:external:py:func:`~sympy.matrices.expressions.hadamard_product` function: .. jupyter-execute:: @@ -728,7 +728,7 @@ If you have column vectors :math:`\bar{v}` and :math:`\bar{u}`, the entries in vector :math:`\bar{u}` are found with :math:`\mathbf{J}_{ij} = \frac{\partial v_i}{\partial u_j}`. The Jacobian_ matrix of vector (column matrix) can be formed with the -:external:py:meth:`~sympy.matrices.matrices.MatrixCalculus.jacobian` method. +:external:py:meth:`~sympy.matrices.matrixbase.MatrixBase.jacobian` method. This calculates the partial derivatives of each element in the vector with respect to a vector (or sequence) of variables. @@ -867,7 +867,7 @@ terms that are not linear in :math:`a_1` and :math:`a_2`. b = -exprs.xreplace({a1: 0, a2: 0}) b -The :external:py:meth:`~sympy.matrices.matrices.MatrixBase.inv` method can +The :external:py:meth:`~sympy.matrices.matrixbase.MatrixBase.inv` method can compute the inverse of A to find the solution: .. jupyter-execute:: @@ -875,7 +875,7 @@ compute the inverse of A to find the solution: A.inv() @ b But it is best to use the -:external:py:meth:`~sympy.matrices.matrices.MatrixBase.LUsolve` method to +:external:py:meth:`~sympy.matrices.matrixbase.MatrixBase.LUsolve` method to perform an `LU decomposition`_ Gaussian-Elimination to solve the system, especially as the dimension of :math:`\mathbf{A}` grows: @@ -956,7 +956,7 @@ Simplification ============== The above result from -:external:py:meth:`~sympy.matrices.matrices.MatrixBase.LUsolve` is a bit +:external:py:meth:`~sympy.matrices.matrixbase.MatrixBase.LUsolve` is a bit complicated. Reproduced here: .. jupyter-execute::