-
Notifications
You must be signed in to change notification settings - Fork 4k
/
import_cv2.py
executable file
·221 lines (193 loc) · 7.85 KB
/
import_cv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python
"""
Broadly speaking, this script takes the audio downloaded from Common Voice
for a certain language, in addition to the *.tsv files output by CorporaCreator,
and the script formats the data and transcripts to be in a state usable by
DeepSpeech.py
Use "python3 import_cv2.py -h" for help
"""
import csv
import os
import subprocess
import unicodedata
from multiprocessing import Pool
import progressbar
import sox
from deepspeech_training.util.downloader import SIMPLE_BAR
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
from ds_ctcdecoder import Alphabet
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
CHANNELS = 1
MAX_SECS = 10
PARAMS = None
FILTER_OBJ = None
class LabelFilter:
def __init__(self, normalize, alphabet, validate_fun):
self.normalize = normalize
self.alphabet = alphabet
self.validate_fun = validate_fun
def filter(self, label):
if self.normalize:
label = unicodedata.normalize("NFKD", label.strip()).encode("ascii", "ignore").decode("ascii", "ignore")
label = self.validate_fun(label)
if self.alphabet and label and not self.alphabet.CanEncode(label):
label = None
return label
def init_worker(params):
global FILTER_OBJ # pylint: disable=global-statement
validate_label = get_validate_label(params)
alphabet = Alphabet(params.filter_alphabet) if params.filter_alphabet else None
FILTER_OBJ = LabelFilter(params.normalize, alphabet, validate_label)
def one_sample(sample):
""" Take an audio file, and optionally convert it to 16kHz WAV """
mp3_filename = sample[0]
if not os.path.splitext(mp3_filename.lower())[1] == ".mp3":
mp3_filename += ".mp3"
# Storing wav files next to the mp3 ones - just with a different suffix
wav_filename = os.path.splitext(mp3_filename)[0] + ".wav"
_maybe_convert_wav(mp3_filename, wav_filename)
file_size = -1
frames = 0
if os.path.exists(wav_filename):
file_size = os.path.getsize(wav_filename)
frames = int(
subprocess.check_output(
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
)
)
label = FILTER_OBJ.filter(sample[1])
rows = []
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((os.path.split(wav_filename)[-1], file_size, label, sample[2]))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def _maybe_convert_set(dataset, tsv_dir, audio_dir, filter_obj, space_after_every_character=None, rows=None, exclude=None):
exclude_transcripts = set()
exclude_speakers = set()
if exclude is not None:
for sample in exclude:
exclude_transcripts.add(sample[2])
exclude_speakers.add(sample[3])
if rows is None:
rows = []
input_tsv = os.path.join(os.path.abspath(tsv_dir), dataset + ".tsv")
if not os.path.isfile(input_tsv):
return rows
print("Loading TSV file: ", input_tsv)
# Get audiofile path and transcript for each sentence in tsv
samples = []
with open(input_tsv, encoding="utf-8") as input_tsv_file:
reader = csv.DictReader(input_tsv_file, delimiter="\t")
for row in reader:
samples.append((os.path.join(audio_dir, row["path"]), row["sentence"], row["client_id"]))
counter = get_counter()
num_samples = len(samples)
print("Importing mp3 files...")
pool = Pool(initializer=init_worker, initargs=(PARAMS,))
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
output_csv = os.path.join(os.path.abspath(audio_dir), dataset + ".csv")
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
with open(output_csv, "w", encoding="utf-8", newline="") as output_csv_file:
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
writer.writeheader()
bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
for filename, file_size, transcript, speaker in bar(rows):
if transcript in exclude_transcripts or speaker in exclude_speakers:
continue
if space_after_every_character:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": " ".join(transcript),
}
)
else:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": transcript,
}
)
return rows
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
exclude = []
for dataset in ["test", "dev", "train", "validated", "other"]:
set_samples = _maybe_convert_set(dataset, tsv_dir, audio_dir, space_after_every_character)
if dataset in ["test", "dev"]:
exclude += set_samples
if dataset == "validated":
_maybe_convert_set("train-all", tsv_dir, audio_dir, space_after_every_character,
rows=set_samples, exclude=exclude)
def _maybe_convert_wav(mp3_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE, n_channels=CHANNELS)
try:
transformer.build(mp3_filename, wav_filename)
except sox.core.SoxError:
pass
def parse_args():
parser = get_importers_parser(description="Import CommonVoice v2.0 corpora")
parser.add_argument("tsv_dir", help="Directory containing tsv files")
parser.add_argument(
"--audio_dir",
help='Directory containing the audio clips - defaults to "<tsv_dir>/clips"',
)
parser.add_argument(
"--filter_alphabet",
help="Exclude samples with characters not in provided alphabet",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Converts diacritic characters to their base ones",
)
parser.add_argument(
"--space_after_every_character",
action="store_true",
help="To help transcript join by white space",
)
return parser.parse_args()
def main():
audio_dir = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(PARAMS.tsv_dir, "clips")
_preprocess_data(PARAMS.tsv_dir, audio_dir, PARAMS.space_after_every_character)
if __name__ == "__main__":
PARAMS = parse_args()
main()